MAC-in-the-Box: Verifying a Minimalistic
Hardware Design for MAC Computation

Robert Kiiennemann and Hamed Nemati

Helmholtz Center for Information Security (CISPA)
{robert.kuennemann, hamed.nemati}@cispa.saarland

Abstract We study the verification of security properties at the state
machine level of a minimalistic device, called the MAC-in-the-Box (MITB).
This device computes a message authentication code based on the SHA-
3 hash function and a key that is stored on device, but never output
directly. It is designed for secure password storage, but may also be used
for secure key-exchange and second-factor authentication. We formally
verify, in the HOL4 theorem prover, that no outside observer can distin-
guish this device from an ideal functionality that provides only access
to a hashing oracle. Furthermore, we propose protocols for the MITB’s
use in password storage, key-exchange and second-factor authentication,
and formally show that it improves resistance against host-compromise
in these three application scenarios.

1 Introduction

Practically all large providers of communication and banking services employ
cryptographic hardware in their critical infrastructure. This ranges from ex-
pensive hardware security modules, used in the web’s public-key infrastructure
and the banking network, to low-cost devices like smart cards, used in mobile
communication and health care. Their purpose is to separate and encapsulate
sensitive cryptographic operations in a device that is (a) designed for secur-
ity and (b) small enough to be audited. By encapsulating sensitive information
within these small, purportedly secure devices, the surrounding system can ex-
ploit the flexibility of general-purpose operating systems to interoperate with its
complex environment.

Despite this simplicity, and even despite their ubiquity — it is estimated that
there are at least 30 billion smart cards in circulation [31] — the formal verific-
ation of security properties in cryptographic hardware designs (i.e., at the state
machine level) has received little attention. So far, formal verification focused on
functional correctness, i.e., the correctness w.r.t. the mathematical description
of the algorithm, while the security of the algorithm was (hopefully) shown in a
pen-and-paper proof. Historically, this was due to a lack of support for reasoning
over probabilistic systems. Over the last years, this support was continuously im-
proved with standalone proof assistants [6], as well as frameworks for Coq (6}, [34]
and Isabelle/HOL [4} 30]. They were successfully used to show security proper-
ties for mathematical algorithms and even for software implementations, but not

2 Robert Kiiennemann and Hamed Nemati

for hardware, due to their focus on probabilistic programs. By contrast, hard-
ware is typically verified in higher-order logic, using mathematical functions to
model its components [12].

In this work, we demonstrate the practicability of traditional hardware veri-
fication techniques for providing strong security guarantees, even when prob-
abilistic reasoning is not availableﬂ We develop a minimalistic device for the
computation of message authentication codes (MACs) based on the recently
standardized SHA-3 hash function. We call it MAC-in-the-box (MITB).

This device stores and protects a user-generated key. We can show that this
minimalistic device provides strong guarantees such as confidentiality and un-
predictability, given the usual assumption that the hash function behaves like a
so-called random oracle. This holds even if its computing environment is under
attack: In HOL4, we formally verify that, to any outside observer, the informa-
tion gathered by an active attacker capable of compromising the MITB’s host is
limited by the information that can be gained from accessing a hashing oracle. In
the random oracle model, this provides the desired guarantees by construction.
This case study in security hardware design also shows the potential of formal
analysis of hardware in the security setting: the verification helped us to identify
three bugs in the early design of the MITB. We elaborate on these discovered
issues in Sec.

Despite its minimalism, the MITB can be used for various applications, e.g.,
establishment of secure channels and second-factor authentication. Its main ap-
plication is to secure password databases. Password databases are frequently
targeted to expose millions of passwords and exploit their reuse on other web
pages. The MITB is initialized with a cryptographic key and stores a MAC of
the password instead of the password itself. Even if this MAC is leaked, it is
neither possible to recover the password from it, nor to guess popular passwords
(‘12345’) without online access to the MITB. We formalize the password stor-
age protocol, and protocols for two further applications, showing their security
against host compromise in the symbolic model. Proof scripts and case studies
are available online (https://bit.ly/2TLpClW).

Paper organization: In Sec. [2] we discuss related work on formally verified cryp-
tographic implementations. In Sec. [3| we introduce the MITB. We define the
security goal in Sec. [d] Sec.] to [7] describe the formalization of the MITB, the
threat model and the proof. Before we conclude, we outline three applications
where the MITB improves the security after host compromise in Sec.

2 Related work

There are various approaches to support cryptographic reasoning in mainstream
theorem provers. The most important aspects here are reasoning about outcome

1 'We verify the MITB at the state machine level. Proof-producing synthesis (e.g. 38])
can be used to refine this to the gate-level for future work.

https://bit.ly/2TLpClW

Verifying a Minimalistic Hardware Design for MAC Computation 3

mo my My ms ' EN

A e T

Az O—> /> [-
7 bits

P ool
¢ bmi ; o >
' \)
))) :

Absorbing phase Squeéi{ng phase

Figure 1. Sponge construction as in SHA-3 (adapted from [24]). The final output
consists of the first n bits of zo.

distributions of random processes described in terms of simple probabilistic pro-
gramming languages, and reasoning about their runtime. Both CertiCrypt [5]
and Verypto [4] were the pioneers in this regard, providing a deep embedding
in Coq and Isabelle, respectively. EasyCrypt [6] is CertiCrypt’s successor and
provides better automation by calling external SMT solvers. It is essentially a
theorem prover on its own, but unlike Coq, Isabelle or HOL-4, it does not strive
to have a small trusted kernel that tactics derive from — a trade-off to speed up
development. It is sometimes unsound [41], and sometimes the built-in tactics
are just not expressive enough to prove properties that should follow from the
semantics [27]. More recent approaches prefer a (semi-) shallow embedding to
make it easier to use the theorem prover’s libraries and reasoning infrastruc-
ture. The Foundational Cryptography Framework (FCF) extends Coq’s built-in
functional language Gallina with probabilistic semantics [34]. CryptoHOL [30]
provides a shallow embedding in Isabelle/HOL. All of these approaches have not
been designed to reason about hardware designs, which are typically described
in terms of higher-order functions [12]. We side-step the need for probabilistic
reasoning in this work and exemplify that, for some cases, it is possible to de-
scribe and prove cryptographic properties like secrecy with standard techniques.
While FCF and CryptoHOL would certainly be useful to formalize surround-
ing protocols using the MITB, they currently both have drawbacks preventing
that use. FCF’s probabilistic semantics do not allow for recursions or exceptions,
which would be used for modeling network routing and communication between
the MITB and the protocol using it. CryptoHOL cannot express polynomial
run-time, which is a prerequisite to formalizing the threat model.

To our knowledge, all approaches for formal verification on the hardware level
were showing the correctness w.r.t. a functional specification, i.e., in absence of
an adversary |18, [20]. There are, however, formalized proofs for implementa-
tions written in C, e.g., for the random number generator HMAC-DRBG [42]
and the HMAC construction in OpenSSL [7], and even for an x86-64 imple-
mentation of SHA-3 [2]. This line of work separates the probabilistic reasoning
about the cryptographic algorithm from the correctness of its implementation
in presence of an adversary. Almeida et al. [2], e.g., use Easycrypt to show the
indistinguishability of the Sponge construction from a random oracle, and the
Jasmin framework [1] to show the correctness, as well as the side-channel res-

4 Robert Kiiennemann and Hamed Nemati

skip.inp ——~—»)
move_inp ﬁLp ——<—» ready_out
block i r MITB(r,e,n)f

ock_inp n .

L. [logyr] ———~—» digest_out
size_inp

Figure 2. MITB: Inputs and Outputs

istance, of a highly-optimized implementation. Our main result (Theorem
categorizes as a correctness result, in the sense that it talks about equivalences
modulo abstraction, however, our verification objective is not a straight-forward
implementation of SHA-3, i.e., with the same or a similar interface, but a hard-
ware design that uses SHA-3 to achieve higher-level properties. Furthermore,
our goals are orthogonal: first, we want guarantees for a hardware design, not
a software implementation. Second, we want to demonstrate how probabilistic
reasoning can be avoided and traditional theorem provers be used.

Existing work on cryptographic hardware like the TPM |16} |15} 37], hardware
security modules [17, |11} |26} [35 |14] or authentication tokens [28 23] operate on
the specification level, abstracting cryptographic bitstrings using a term algebra.
Implementation-specific aspects like the complicated state-machine needed to
correctly apply padding or the low-level access available to an adversary after
compromise are not represented in these models.

3 Hardware design

The MITB is a standalone device that computes a MAC using the KECCAK
family of hash functions [9], which NIST standardized as SHA-3 [19]. A nice
feature of SHA-3 is that it can serve as a message authentication code (MAC)
by simply prepending a secret key to the message, i.e., the function:

mac(k,m) := SHA3(k||m)

is a valid MAC [8]. MACs operate as follows: to ensure the integrity of a message
m, one computes mac(k, m) and attaches it to the message. The communication
partner, who also knows k, can recompute this function and compare the result
to the MAC received. If the result is the same, the communication partner can
be sure the message was created by a party that knows k (typically either the
sender or the receiver himself) and that m was not modified in transit. Previous
hash functions like SHA-1, SHA-2 and MD5 were vulnerable to length-extension
attacks and thus required more complicated constructions like HMAC to serve as
MACs. (Cryptographic) hash functions themselves are functions that are difficult
to invert and are resistant to collision attacks. In contrast to unforgeability, the
main property of a MAC, it is difficult to formalize these properties, hence hash
functions are often abstracted in terms of random oracles. A random oracle is a
randomly chosen function from {0,1}* — {0,1}" where n is the length of the
hash, i.e., each new input appears to be freshly sampled, but the function itself
is deterministic.

Verifying a Minimalistic Hardware Design for MAC Computation 5

Tnput b !
Input k[Input bl, =17 - 2 AbsorbEnd110S1
L =
- M - Input b —r—9
start —[Ready] * [Absorbing 7 AbsorbEnd10S1
=, J
Input bl 1< =4 [AbsorbEnd0S1

Figure 3. State transition diagram. Not shown: (a) Skip preserves state. (b) In any
absorbing state, Move returns to Ready, but resets volatile memory to 0"¢. Here, k
and b are input blocks and [represent input size.

The sponge construction SHA-3 is based on the ‘sponge construction’ in
which an arbitrary length message is iteratively ‘absorbed’ into a finite state
(see Figure . The number of iterations depends on the length of the message.
Once all message blocks have been absorbed, the resulting state can be ‘squeezed’
to extract a digest. In general, this squeezing can be used to derive a digest of
any desired length, however, all instances of fixed-length SHA-3 require only a
single squeeze operation.

SHA-3 defines four instances of this construction, but recommends only one
(the others are for testing and light-weight hashing). This instance is defined by
a bitrate of r = 576, a capacity of ¢ = 1024 and an output size n = 512 < 7,
i.e., the number of bits to which the output is truncated. The state of the SHA-
3 sponge algorithm thus consists of r + ¢ = 1600 bits. Initially, the state is
077¢, i.e. each of the 1600 state bits is 0. In each iteration, a state permutation
f:Z5T° — Z5+¢ is applied on the state. A detailed formal specification of f is
not given here; f is treated as an uninterpreted parameter in the specification
and proofs. That is, we do not make any assumptions about f itself other than
that the sponge construction with f can be abstracted by a random oracle. The
attacker can compute f on inputs of her choice.

By itself, the sponge construction is only defined for input sizes that are
multiples of r. Therefore, a 10*1 padding is used, i.e., a bitstring with 1 at
the beginning and end, and sufficiently many Os in between. In addition, the
SHA-3 specification requires two bits 01 to be added to distinguish fixed-length
SHA-3 from its variable-length siblings SHAKE-128 and SHAKE-256. Hence any
message m is padded to a multiple of r bits by appending at least four bits: first
011, then sufficiently many (|m|+4 mod r) zeroes, and finally a trailing 1. An
empty message, e.g., is padded to a block 01107 ~*1.

State machine The MITB computes mac(k, m), but keeps k secret. It provides
two operations: overwriting k (reading is not possible by an outsider), and com-
puting mac(k, m) for a given m. As we detail in Section |8} this functionality by
itself is sufficient to improve the resilience of password databases, secure channel
establishment and two-factor authentication against host compromise. As m can

6 Robert Kiiennemann and Hamed Nemati

be arbitrarily long, the device operates in a blockwise fashion, absorbing 512 bits
per call. Each full block is applied to the current state. If the user indicates an
input of shorter length, a padding is applied and the operation finalized. Only if
the padding was correctly applied, the state may be output.

The MITB has two 1-bit control inputs skip_inp and move_inp, two data
inputs block_inp and size_inp, a 1-bit control output ready_out and a data out-
put digest_out. It is parametrized on three numbers (r, ¢,n) and a permutation
function f. These are part of the KECCAK specification. An actual device would
be manufactured with specific values for the parameters, and we require that
4<r,0<candn<r.

The input block_inp is r-bits wide and the output digest_out is n-bits wide.
The input size_inp has sufficient bits to represent a number of size r or less.
For convenience, it is modeled as a number rather than a bitstring. The truth
values T, F model bits 1, 0, respectively. The MITB runs continuously after being
switched on. It is implemented as a state machine using combinational logic and
registers (see Section. All a user can observe (assuming tamper-resistant man-
ufacture) are the sequences of values appearing on the outputs ready_out and
digest_out, which depend on the values input via skip_inp, move_inp, block_inp
and size_inp. From a user’s point of view, the MITB can be in either of two
states: Ready or Absorbing. It powers up into state Ready. The 1-bit output
ready_out indicates whether the state is Ready (ready_out = T) or in some ab-
sorbing state (ready_out = F).

The input skip_inp ‘freezes’ the MITB: holding it T stops the state changing
on successive cycles. If skip_inp is F, then input move_inp causes the state to
change on the next cycle; in particular it is used to signal that MITB should
start absorbing a message. In the state machine, this is represented as a transition
Move, no matter what values block_inp and size_inp have. If both move_inp and
skip_inp are F, we consider this as a transition Input block_inp size_inp.

MITB has a permanent memory for holding an r-bit secret key. The key
can be set or changed by holding both skip_inp and move_inp F in the Ready
state. The data being input on block_inp then overwrites the stored key. In the
Absorbing state, if both move_inp and skip_inp are F, we absorb block_inp to
compute the MAC in a blockwise fashion. Depending on the message length, the
padding might cause the message to extend to another block, in which case this
additional block needs to be absorbed. As described in the previous section, the
padding adds at least four bits, so a message that is 1, 2 or 3 bits short to the
block length needs to have an extra block for the parts of the padding. Thus
the need for three states that finalize the padding block. E.g., if the message
is two bits short, i.e., size_inp is r — 2 in Absorbing, then 01 is appended to
the last block before absorbing it, and MITB moves into state AbsorbEnd10S1
(the ‘S’ can be read as “*). There, a block 10" =21 is absorbed (inputs block_inp
and size_inp are ignored) before moving to Ready in the next cycle. Note that
Absorbing also moves back to Ready if size_inp < r — 4.

The main correctness property of the device is that if the specified protocol
is used to input a message, then its MAC will appear on digest_out. The main

Verifying a Minimalistic Hardware Design for MAC Computation 7

security property is that no matter what inputs are supplied, the secret key
cannot be revealed nor any other information than a valid MAC. In particular,
no chain of inputs can leak parts of the state of the sponge construction before
the padding has been completed.

MAC computation protocol The MAC of m, i.e., the SHA-3 hash of k||m,
is computed as follows:

1. If ready_out = 0, i.e., the device is not in Ready state, transition to the
Ready state using Move, i.e., by inputting F on skip_inp and T on move_inp
(block_inp and size_inp are ignored during this step).

2. The device is put into Absorbing state using another Move.

3. The user splits m into a sequence of blocks, m = by||ba|| - -+ ||bn-1]/bn, such
that all blocks except the last one are r-bits wide, i.e., |b;| =7 for 1 <i<n
and |b,| < r. If r divides exactly into |m/, then b, is taken to be the empty
block (so |b,| = 0).

4. Starting on the next cycle, and continuing for n cycles, the user performs
transitions Input b; |b;|, i.e., inputs F on both move_inp and skip_inp, b; on
block_inp and |b;| on size_inp, where 1 < i < n. During this time F will be
output on ready_out.

5. After inputting b,,, the user keeps inputting F on skip_inp and move_inp for
one more cycle until ready_out becomes T. On the cycle when this happens,
the hash of k||n will appear on digest_out. The number of cycles taken
depends on |b,|. If |b,| < r—4 then ready_out will become T on the cycle
after b, is input. If r—4 < |b,| < r, then ready_out will become T the cycle
after b, is input.

Key update protocol The key is updated to value k£ in two steps.

1. Exactly as step 1 in the MAC computation protocol.

2. Perform transitions Input & 576 by setting both move_inp and skip_inp to
F, block_inp to k and size_inp to 576.

4 Security goals

The MITB is designed to protect password databases in case of a server breach,
but can be used for many other different applications (see Section. We assume
that an attacker may eventually gain control over this server, in which case the
secrecy of the key should be preserved, but the attacker can compute MACs of
her choice, re-set the key or send arbitrary other commands to the MITB. Before
the attacker gains control, she shall not be able to compute or predict MACs.

8 Robert Kiiennemann and Hamed Nemati

Real-world / Ideal-world formulation Complex cryptographic properties
are often formulated using the real-world / ideal-world paradigm. The real world
describes how the cryptographic primitive or protocol interacts with the ad-
versary, i.e., the threat model. The ideal world describes an idealised setup
that provides the necessary guarantees by construction. In the case of signa-
tures, e.g., all signatures are created by a central authority that keeps a list of
message-signature pairs, so only message-signature pairs that it constructed itself
are accepted, thus providing unforgeability by construction. Or, for encryption
schemes, it outputs random bitstrings instead of a ciphertexts, thus providing
confidentiality by construction. If it is not possible to distinguish both worlds,
then the real-world scenario must be sufficiently close to the ideal world that it
can be considered secure.

In our case, the real world consists of the MITB in communication with
some environment, e.g., one of the applications in Section [§] The environment
uses the protocol from Section |3 to compute a MAC or update the key, but can
also bypass this protocol by declaring the host computer corrupted. In this case,
the environment’s inputs are directly transferred to the MITB.

The ideal world is specified by a simple machine that (a) stores or overwrites
a key k; (b) for every MAC request m, calls a hash oracle with k||m. (c) If the
environment declares the host system corrupted, the attacker can do nothing
more than to continue to query this oracle, in particular, she does not get access
to k. Our security result in Theorem [If can thus be informally stated as follows:

For all parameters r, ¢ and n such thatr >4, ¢ >0 andn <r, and
any sequence of inputs i, the sequence of outputs obtained by sending i
to the real-world is equal to the sequence of outputs obtained by sending
i to the ideal-world.

Hash functions and the random oracle model So far, a security defini-
tion for cryptographic hash functions that is both formal and directly applies
to real-life hash functions has not been found. Properties like collision resist-
ance postulate that there is no known adversary that can provoke a collision,
but fundamentally, there are adversaries that can create collisions, due to the
pigeonhole principle. We cannot formally reason about all known algorithms.
In cryptographic proofs, hash functions are thus usually abstracted using
random oracles (ROs). A RO has two properties: First, when queried for a new
bitstring m, RO draws a bitstring from the uniform distribution of bitstrings
of length n. Second, if m was queried before, the RO responds with the same
bitstring as before. Since hash functions are deterministic, a RO can be distin-
guished from any fixed hash function. Cryptographic results, e.g., indifferenti-
ability [8] or PRF security [21] hence consider a sponge construction that calls
an oracle to evaluate a randomly chosen permutation (and/or a keyed variant of
the construction [21]). But in SHA-3, the permutation is public and fixed.
Theorem [1| complements these result. It relates the MITB to the ideal world
with the sponge construction for an arbitrary, but fixed permutation. Indifferen-
tiability relates the ideal world with a randomized sponge construction (keyed

Verifying a Minimalistic Hardware Design for MAC Computation 9

or with a randomly chosen permutation) to the ideal world with a random or-
acle, within certain bounds on the adversary’s running time and the number of
oracle queries. Observe, however, that the step from the deterministic sponge
construction (with a fixed permutation) to the randomised construction used in
cryptographic proofs remains a heuristic; it is (provably) incorrect.

Guarantees provided by construction Once we (heuristically) instantiate
the hash function in the ideal world with a randomly chosen hash function, as
in the RO modelﬂ we obtain a very clear interpretation of the guarantees that
the ideal world we previously described provides.

1. Confidentiality: The output contains neither information about &, nor the
message m (as it is merely a randomly chosen bitstring).

2. Unpredictability: The MAC computation yields unpredictable values for each
k and m, as long as (k,m) were not queried before (as the result is chosen
freshly).

3. Determinism: If (k,m) were previously queried, the MAC will be the same
(as the RO is deterministic and k||m constitutes the query). This guarantees
that a MAC can be verified later.

4. Resistance against compromise: The above guarantees hold even if the host
system is compromised.

These guarantees go beyond the guarantees of message authentication codes
(which are allowed to leak information about the authenticated message) or
hash functions (which may leak information about the hashed message, but can
be forged by everyone). We have designed the functionality specifically to suit
secure password storage, our main application.

5 Formalising the MITB

We base the MITB’s definition on the function MITB_FUN, which specifies the
behaviour abstractly. MITB_FUN takes an abstract state s € S and an input 4, and
returns the next state. The abstract state s = (cntl, pmem, vmem) consists of the
value of the control register cntl € {Ready, Absorbing, AbsorbEnd(0S1[1051|110S1)})
and a permanent (pmem) and volatile (vmem) memory, which are both bit-strings
of length 7+ ¢. The control flags correspond to the states described in Section
An input i can either be Move, Skip or Input bk len, where bk is a bitstring of
size r and len corresponds to the number of bits of bk that constitutes the in-
put block (thus len < r). The bitstring bk and number len represent inputs on
block_inp and size_inp.

The definition of MITB_FUN uses ML-style pattern matching. Due to lack of
space we skip presenting MITB_FUN's formal definition here (see Appendix .
However, its possible transitions are depicted in Figure [3] The most complex

2 A randomly chosen hash function or an oracle that samples random hash values on
demand are equivalent formulations of the RO model.

10 Robert Kiiennemann and Hamed Nemati

MITB f (cntl, pmem, vmem) MITB.STEP f s i =
(skip, move, block, size) = let (cntl’, pmem’, vmem’) = MITB f s i;
MITB_FUN f (cntl, pmem, vmem) digest =

(if skip = T then Skip (if cntl’ = Ready
else if move = T then Move then (T,(r — 1><0) vmem’)
else if size < 7 then else (F,ZERO))

Input block size in ((cntl’, pmem/, vmem'), digest)

else Skip)

Figure 4. Definition of MITB function. Figure 5. Definition of step function.

part of MITB_FUN specifies the state transition corresponding to absorbing a block.
What happens depends on the input length. The complexity here is due to the
padding applied by the devices, as described in Section |3 If the block length
is less or equal to r — 4, e.g. 0, the device applies the padding and sets cntl
to Ready. If the last block is one bit short of being a full block (len = r — 1)
then one bit of padding is added and the device enters an absorbing state with
cntl = AbsorbEnd0Si. On the next cycle, the remaining padding (i.e. 7 — 1
zeros and a final T) is added and the permutation f is applied to vmem before
transitioning back to the ready state. Similar steps are taken if the input block
length is equal to r — 2 or » — 3. When the block size is exactly r, the device
starts absorbing a non-final block, which is done by: (i) appending zero to it,
(ii) XOR-ing the result with the current value of the volatile memory vmem, (iii)
applying the KECCAK permutation f to the result of the XOR-ing, and finally,
(iv) updating the volatile memory with the result of applying the function f.

Figure 4| shows the definition of the function MITB which decodes the inputs
into abstract commands Skip, Move and Input and calls MITB_FUN.

We also define a step function (Figure [5) which yields the next state of the
system. The step function behaves like the MITB, but defines the output, too.
The step function takes a permutation f, the current state of the MITB, denoted
as s, and the input ¢ = (skip_inp, move_inp, block_inp, size_inp). It returns the
next state of the MITB together with an output. The returned output depends
on the value of cntl in that cycle. In the definition, (h ><) w represents the
HOLA4 bit extraction function for input word w, and h and [are the upper and
lower bound for the number of extracted bits, respectively.

6 Formalizing security

We define the security of the MITB in terms of a functionality, an idealized
specification of both the functional correctness of the device, and the information
the adversary can learn from it. The popular ‘universal composability’ framework
defines how the MITB ought to relate to this functionality.

Verifying a Minimalistic Hardware Design for MAC Computation 11

protocol position

\N
4
\N
J

> S -7 adversarial pos.

Figure 6. 7 (perfectly) emulates F iff, for all A, there exists S such that for all Z, the
lhs network is indistinguishable (or instead: identical) from the rhs.

6.1 Universal composability

Our security definition follows the real-world/ideal-world paradigm, which can
be generalized into a security notion called emulationEI Emulation provides prop-
erties similar to refinement and entails a property called universal composability.
Canetti introduced universal composability (UC) in a framework that goes by
the same name [13], but there are several variations of it [22, [29]. If a protocol
or cryptographic primitive 7 UC emulates an ‘ideal-world’ system F' (called the
functionality), then 7 provides universal composability w.r.t. F'. This means that
for the analysis of any higher-level system p that uses 7, it is sufficient to analyze
the more abstract and thus simpler system where p interacts with F' instead —
even if multiple copies of 7 run in parallel.

To formulate the security property, we formalize UC’s communication frame-
work and perfect emulation, the strongest variant of their refinement notion. We
did not seek to prove that UC emulation implies universal composability.

The real world is characterized by the protocol m communicating on two
interfaces, the honest and the adversarial interface. The honest interface provides
inputs, possibly from higher level protocols. A secure channel protocol like TLS,
e.g., receives the instruction ‘Party A requests sending m to Party B’ and may
later output ‘Party B received m from A’. The adversarial interface models the
network: all network communication, e.g., the encrypted TLS records, is sent to
and received from an adversary A. The attacker can hence eavesdrop messages,
but also drop or modify them.

In the ideal world, the functionality F' receives the same high-level instruc-
tions on the honest interfaceﬁ Ideally, the messages on the network provide no
useful information for the adversary. However, often enough this is impossible;
encryption, e.g., reveals the length of the plain text. Therefore, the functional-
ity makes this so-called leakage explicit by outputting, e.g., the length of the
plaintext on the adversarial interface. To show that the network traffic leaks no
information besides F’s output on the dishonest interface, most emulation proofs
construct a simulator S that imitates A’s behavior using only this intended leak-
age. Thus, to an outsider, no matter what inputs the protocol receives, for every
attacker A there should be a simulator S such that 7 interacting with A is in-

3 Also called ‘realization’ [13].
4 More precisely, F' specifies this interface, and 7 tries to implement it accordingly.

12 Robert Kiiennemann and Hamed Nemati

distinguishable from F' interacting with S. The comparison assures correctness
(as any difference between the honest protocol and the ideal functionality on the
honest interface can be observed) and confidentiality up to the leakage in F (if
the adversary can learn something that the simulator cannot reproduce from the
input provided by F', then there would not be a simulator that achieves indis-
tinguishability). The inputs to the protocol can come from a high-level protocol
using it (e.g., a p2p system using TLS for communication between peers), and
are abstracted as a Turing Machine Z. In the real world, Z interacts with 7
(on the honest interface) and with A (on the adversarial interface). In the ideal
world, Z interacts with F' and S.

It was shOWIﬂ that for any environment Z and adversary A that are success-
ful in distinguishing real world and ideal world, a new environment Z’ can be
constructed that simulates A and only relies on a special attacker A4, the so-
called dummy adversary. The dummy adversary only forwards messages between
Z' and . Thus, in practice, one shows the existence of a simulator S such that
for all environments Z, w and A, are indistinguishable from F' and S.

We formalize the communication structure in UC as follows. A message data-
type indicates the routing for messages between the protocol position (occupied
by 7 in real world, F' in the ideal world), the adversary position (occupied by Ay
in the real word, S in the ideal world) and the environment position (occupied
by Z in both cases).

Message = EnvtoP of « | EnvtoA of 3 | PtoEnv of 7y | PtoA of 4 | AtoEnv of 77 | AtoP of ¢

Initially, the environment sends a message of type EnvtoP or EnvtoA to either
the adversary or the protocol. The function ROUTE p a, for a protocol step
function p and an adversary step function a, expects the previous state of p
and a and a value of type Message to be routed. It computes the next state of
the protocol and adversary and the next message to be routed. If the message
matches EnvtoP or AtoP, the protocol step function is applied, the protocol’s
state updated, and the output converted into type Message, e.g.:

ROUTE p a ((state_p, state_a),EnvtoP m) =
(let (state_p_n, out) = p state_p (EnvtoP m)
in ((state_p_n, state_a), Proto_-Wrapper out))

The wrapper Proto_Wrapper transforms a datatype for protocol output into
Message, i.e., values that match either PtoEnv or PtoA. This ensures that the
protocol cannot send messages that appear to originate from the adversary, and
vice versa. Messages addressing the adversary are handled analogously.

Before the environment is addressed again, there can be additional routing
steps between the protocol and the adversary. Messages to the environment,
however, terminate a routing step and are returned. We will later restrict the
communication to three routing steps before the environment is again in control,

® This simplification was proven sound for the UC framework [13], GNUC frame-
work [22| and the IITM framework [29], so for brevity, we will assume it part of the
definition.

Verifying a Minimalistic Hardware Design for MAC Computation 13

which is sufficient for our case (otherwise, a routing error is produced).
ROUTE p a ((state_p, state_a), PtoEnv m) = ((state_p, state_a), PtoEnv m)

Note that the scheduling model of UC gives control to the party that received
a message. More elaborate scheduling mechanisms are modeled by including
scheduling requests to the adversary in the protocol.

In UC, the environment is a Turing Machine, however, in this work, we
consider the strongest notion of emulation, called perfect emulation. Here, the
sequence of messages the environment receives is the same (rather than indistin-
guishable to all polynomial time environments). We, furthermore, do not assume
any runtime bounds on the participantsﬂ This simplifies the analysis: We can
model the set of environments as the set of input sequences and consider all
other participants in terms of mathematical functions, and thus avoid probabil-
istic reasoning altogether. This is sufficient for the MITB because it is entirely
deterministic, due to the key being generated outside the device and the de-
terministic nature of the hash function. We hence define (EXEC p a), again on
protocol and adversary step functions p and a, that applies a sequence of inputs
i to an initial protocol and adversary state s = (s,,sp) until one of these two
parties outputs a message addressed to the environment.

We define a single execution step from the perspective of the environment as
follows, where ROUTE_THREE is just the threefold composition of ROUTE.

EXEC.STEP p a ((state_p, state_a), input) =
(let

((state_p_m, state_a_n), out) =

ROUTE_THREE p a
((state_p, state_a), ENV_WRAPPER input)

in

((state_p_m, state_a_n),

GAME_OUT_WRAPPER out))

The environment is fully described by the sequence of inputs it sends to the
protocol or the adversary, hence we define an execution as follows:

EXEC pas]| = ||
EXEC p a s (i::il) = (let (s', out) = EXEC.STEP p a (s,1) in (s, out) :EXEC p a s’ il)

6.2 Security definition

The real world The environment Z communicates with parties that compute
MACs using the MITB via a library, as well as an attacker, who can take control
over the machine the MITB is attached to and thus bypass this library. The
attacker also communicates with Z and can thus provide Z with information

5 This is w.l.o.g. for all participants except for the simulator, which, however, is obvious
to run in polynomial time in our case.

14 Robert Kiiennemann and Hamed Nemati

that allows it to distinguish real world and ideal world. As the attacker is in-
stantiated with the dummy attacker, which is defined as follows, Z can access
the adversarial interface, in this case the MITB, via this indirection.

DUMMY_ADV v (EnvtoA m) = (0,Adv_toP m)
DUMMY_ADV v (PtoA m) = (0,Adv_toEnv m)

For messages from the environment, PROTO models the protocols for MAC
computation and key updates we defined in Section [3| (see Appendix [A] for the
precise modeling).

The ideal world In the ideal world, Z receives ‘correct’ output for whatever
message it inputs. ‘Correct’ means the following: given a message (SetKey, k), it
stores k. For any subsequent message (Mac, m), it outputs H(k||m), where H is
a hash function. The function (FMAC H s) describes the output and next state
of the ideal-world functionality in state s, parametrized with the hash function H
to represent the hashing oracle H. The only state that FMAC holds is the stored
key k and the corruption status (T iff corrupted).

FMAC H (K’,F) (EnvtoP (SetKey k)) = ((k,F),Proto_toEnv Ow)
FMAC H (K',F) (EnvtoP (Mac m)) =
((K',F),Proto_toEnv (H (word_to_bits K’ || m)))

After the corruption signal was received (and forwarded to the adversary),
FMAC responds to oracle queries, computing H(k||m):

FMAC H (K',F) (EnvtoP Corrupt) = ((K’,T), Proto_toA WasCorrupted)
FMAC H (K',T) (AtoP CorruptACK) = ((K’,T),Proto_toEnv Ow)
FMAC H (K',T) (AtoP (OracleQuery m)) =

((K',T), Proto_toA (OracleResponse (H (word_to_bits K’ | m))))

The responses on the attacker interface formalize that the attacker does not
receive information beyond the ability to compute MACs: Via the adversarial
interface of FMAC, the simulator has access to the hash function #, but not to
the MITB. Note that, in contrast to the real world, FMAC notifies the simulator
that it was corrupted, so the simulator knows whether it has to deny or simulate
direct access to the MITB. After corruption, all honest queries are ignored:

FMAC H (K’',T) (EnvtoP (SetKey wi6)) = ((K',T), Proto_toEnv 0w)
FMAC H (K',T) (EnvtoP (Mac w7)) = ((K',T),Proto_toEnv Ow)

Our main result is that, no matter which inputs the environment sends, the
outputs are the same. In the next section, we will define a simulator SIM that
mimics the behavior of the MITB with access only to the hashing oracle provided
by FMAC. We establish its existence by constructing it so that:

Theorem 1. For all parameters r, ¢ and n such that r >4, ¢ >0 andn <r
and permutations f : {0,1}7Y¢ — {0,1}"%¢, if the protocol and dummy ad-
versary, as well as the functionality FMAC and the simulator are in their re-
spective initial states s and s, then, for any sequence of inputs i, the out-
put sequences tracers = EXEC (PROTO (MITB.STEP f)) DUMMY_ADV s i, and
traceigess = EXEC (FMAC (Hash f 0)) (SIM MITB.STEP f) s’ i are equal.

Verifying a Minimalistic Hardware Design for MAC Computation 15

Note that f is a free variable in this theorem, and can stand for any permuta-
tion. The function (Hash f 0) formalizes the sponge construction with permuta-
tion f and initial state 0"7¢, including the SHA-3 padding and the truncation to
n bits. For lack of space, we will not elaborate on its formalization. The protocol,
which is parametric in the MITB step function, is instantiated with MITB_STEP
from Section [5] which itself is parametric in the underlying permutation f.

7 Proof overview

We proceed to outline the proof of Theorem [I} To this end, we first present the
simulator and the relational invariant used to characterize possible states that
the system can enter at runtime.

SIM mitbf f (Absorbing, vmem,m,F,c) (EnvtoA (F,F,inp,inp_size)) =
if mp_size > T
then ((Absorbing, vmem, m,F, ¢), AtoEnv (F, ZERO))
else if inp_size = r
then ((Absorbing, ZERO, m || w2b inp, F, ¢), AtoEnv (F,ZERO))
else if inp_size < r — 4

then if inp_size = 0
then((Absorbing, vmem, [], F, ¢), AtoP(OracleQuery m))
else ((Absorbing, vmem, [],F,c),

AtoP (OracleQuery(m || TAKEﬂinp_size(wMﬂ((mp_size —1><0) inp)))))
else
(let state = if inp_size = r — 1 then AbsorbEnd110S1
else if inp_size = r — 2 then AbsorbEnd10S1
else AbsorbEnd0S1
in
((state, ZERO, m || TAKE inp_size (
w2b ((inp_size — 1><0) inp)),F,c), AtoEnv (F,ZERO))))

The simulator pretends to be the attacker from the real world, i.e., the
dummy adversary. It simulates the information the functionality outputs in the
ideal world, in particular the MITB’s output after corruption. To imitate the
MITB, without knowing the last key that was stored, the simulator uses the
oracle H(k|/m), where H is a hash function and || denotes the bit-string concat-
enation function. The simulator SIM ignores queries until the variable corrupted
is set. Afterwards, it parses each message m sent by the environment into an
input (skip_inp,move_inp,block_inp,size_inp) € B x B x {0,1}" x N". We for-
mulate the behavior of SIM for the case where Corrupt = T as a function on its
state (cntl, vmem, m, overwt, s) € {Ready, Absorbing, AbsorbEnd(0S1|1081]110S1)}
x{0,1}"x{0,1}*xB xS and the input (skip_inp, move_inp, block_inp, size_inp).

7 The function TAKE i [returns the first ¢ elements of the list [.
8 w2b denotes the HOL4 function to convert words to bit string.

16 Robert Kiiennemann and Hamed Nemati

The output of the function is a new state, and the simulated output of the MITB,
i.e., (ready_out,digest_out) € B x {0,1}"™. Due to lack of space, the detailed
definition of SIM is included in Appendix

Here, we only present an extract from SIM’s definition to show challenges
involved in its formalization. The most interesting part of SIM’s definition is
how it acts as a buffer between the environment, which may successively send
message blocks to be MACed, and the hashing oracle, which expects a single
oracle query.

In this case, depending on the input size, the simulator has to match the
MITB’s behavior: If the input size is greater than r the simulator, like the
MITRB, skips this input and its state remains unchanged. When the input size is
equal to r, the simulator adds the full block to its buffer m. If the input size is
between 0 and r — 4, the simulator adds the corresponding prefix of the input
block to the buffer, and queries the oracle. If the input size is between r — 3
and r — 1, the appropriate AbsorbEnd(0S1|10S1|110S1) needs to be selected, as the
MITB will not be able to output the MAC before yet another input is given.
After sending the oracle query, the simulator awaits FMAC’s response.

SIM mitbf f (—,vmem,m,F,c)
(PtoA (OracleResponse hashValue)) =
((Ready, hashValue, [],F, ¢), AtoEnv (T, hashValue))

To prove emulation, we define an invariant which restricts valid states of
the system. The invariant has three parts, each relating specific parts of real
and ideal world states. The first part of the invariant relates the permanent and
volatile memory in the real world to the key and the messages received so far in
the real world, in case the MITB was corrupted. For the given key k in the real
world, the permanent memory should always be f(0°||k). The volatile memory
should be the result of absorbing, but not yet padding, the messages buffered
by SIM according to the specification of the sponge construction. Depending on
the simulated control state, the length of the buffered messages should be off by
1,2,3 or 0 from a multiple of the block length and, in Ready-state, the first n bit of
the volatile memory should equal the previous response from the hashing oracle.
The case where the key was overwritten is an exception: now the simulator can
execute the step function itself, without the oracle. In this case, the volatile and
permanent memory of the MITB and the simulated counterpart have to match.

Besides the memory invariant, the invariant consists of two other properties.
(i) The corruption status in real and ideal world correspond. (ii) If the real
world is corrupted, the control state of the MITB simulated by SIM and the
actual MITB in the real world correspond. The proof of Theorem [l| proceeds by
induction on the length of the input ¢. The base case (i = []) holds trivially. In
the inductive step, we first prove that the starting states satisfy the constraints
of the invariant. Then we show that, given the same input, a single step by the
real and ideal worlds preserves the relational invariant. From that, we follow
that the output in the successor state must be the same in both worlds. Tab.
gives details on the specification and proof size.

Verifying a Minimalistic Hardware Design for MAC Computation 17

Table 1. Size of formal proof in lines of code (loc).

definitions (loc) theorems incl. proofs (loc)

universal composability 137 —
sponge construction 58 512
MITB 547 1962

Intuitively, the existence of the simulator shows that all outputs of the MITB
are hashes of correctly padded messages, and therefore non-revealing. The con-
struction of the simulator pointed us to the need of an extra absorbing state
— our initial design trusted the library to remember to request a final block.
Later, we incorporated the two bits that are meant to distinguish SHA-3 from
the SHAKE family, hoping the proof would not be affected. On the contrary,
it required the introduction of another two absorbing states, which manifested
in the impossibility of proving the memory invariant with only one absorbing
state. Finally, failed attempts in showing the state invariant indicated the need
for an initialization procedure in MAC computation protocol (as well as the key
update protocol), to ensure that the device is indeed in Ready state. These three
flaws, which we discovered early on, while proving emulation of the ideal func-
tionality, seem to be stereotypical flaws when designing hardware for a hostile
environment. None of them would have been discovered by tests for functional
correctness.

8 Applications

We propose three applications for the MITB. Each provides improved resilience
against host compromise. All properties we mention have been verified using
off-the-shelf protocol verification tools. As protocols are notorious for their com-
plex interleaving of a possibly unbounded number of small programs running
in concurrency, these are the right tool for the job, as they have a large degree
of automation. These tools operate in the symbolic model, where cryptographic
outputs are abstracted using a term algebra, e.g., a MAC is a term of form
mac(k, m), where mac is a function symbol, and k, m themselves are terms. The
MITB is reflected in these models by the simple fact that the term k used in
the key-position remains secret even if the attacker gains control over its host
system. (See Appendix |§| for the models.)

Secure password storage: All businesses that store password data need to
secure these password databases for the case where they get stolen. To store
passwords securely, the MITB is initialized with a fresh key during set-up, then
used to compute MACs on the hashed and salted password. We used ProVerif’s
diff-equivalence [10] to show strong secrecy, i.e., resistance against offline pass-
word guessing. The verification takes less than a second for an unbounded num-

18 Robert Kiiennemann and Hamed Nemati

ber of passwordtﬂ Furthermore, the MITB could replace the YubiHSM, which
costs about $650H in an even more elaborate password storage scheme by
Almeshekah et. al.

Establishing a secure channel: The MITB can harden a variation of the
signed Diffie-Hellman key-exchange protocol, which is used, e.g., in TLS and
IPsec. Due to the MITB, this protocol provides perfect forward secrecy (even if
the adversary gains control over one of the MITBs, all session keys established
prior to this event remain secret) and post-compromise security (even if the
adversary temporarily gains control over one of the MITBs, once the participants
come together and set up a new key, future session keys will again remain secure.)
Using the tamarin/SAPIC [36] [25] toolchain, we establish both properties for an
unbounded number of sessions. The proof terminates in 1516s]

Two-factor authentication: We demonstrate that the MITB is compatible
with the FIDO standard for universal 2nd factor authentication [40] (see Figure[7]
in Appendix |§|). With tamarin/SAPIC, we establish perfect forward security
and post-compromise security for authentication, i.e., the property that any
successful login on the web server was initiated by the user. The proof terminates
within 9s

9 Conclusion

With the MAC-in-the-box we presented the first full-fledged formal security ar-
gument for a hardware design. Despite its simplicity, the device has various
applications. It also demonstrates that interactive theorem provers, which have
an excellent track record for hardware verification, can in some cases be directly
applied to the analysis of cryptographic constructions — even if support for
probabilistic reasoning is missing or insufficient.

Our technique applies when common abstractions in cryptography are heur-
istics rather than mathematically valid simplifications. Examples are random
oracles for hash functions, or pseudorandom functions for block ciphers. Designs
based on these primitives essentially argue that they provide proper access to
these abstractions. For cases where this property holds unconditionally, our ap-
proach has advantages over cryptographic frameworks that come with additional
proof obligations, or are not available for the theorem prover of choice.

Acknowledgements

This project was Graham Steel’s and Michael J. C. Gordon’s idea, who both
supported it in its early stages. A substantial part of the MITB’s formalisa-
tion was contributed by Mike, who this paper is dedicated to. The first author

? Computed on a MacBook Pro with 3,1GHz Intel i7 and 16GB RAM.

10 Pegsl et al. estimate a SHA-3 implementation on an RFID token to cost about
$0.05 |33]. As the MITB’s state machine and key storage do not fundamentally add
to that, production cost will likely be dominated by the bus technology, e.g., USB.

Verifying a Minimalistic Hardware Design for MAC Computation 19

is grateful for his guidance and his kindness in difficult times. This work was
carried out in the framework of the French-German-Center for Cybersecurity,
a collaboration of CISPA and LORIA. The second author is supported by the
German Federal Ministry of Education and Research (BMBF) through funding
for the CISPA-Stanford Center for Cybersecurity (FKZ: 16KIS0762).

References

1.

10.

11.

Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V., Oli-
veira, T., Pacheco, H., Schmidt, B., and Strub, P.: Jasmin: High-Assurance and
High-Speed Cryptography. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pp. 1807-1823. ACM (2017)

. Almeida, J.B., Baritel-Ruet, C., Barbosa, M., Barthe, G., Dupressoir, F., Grégoire,

B., Laporte, V., Oliveira, T., Stoughton, A., and Strub, P.: Machine-Checked
Proofs for Cryptographic Standards: Indifferentiability of Sponge and Secure High-
Assurance Implementations of SHA-3. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pp. 1607-1622. ACM (2019)

. Almeshekah, M.H., Gutierrez, C.N., Atallah, M.J., and Spafford, E.H.: Ersatzpass-

words: Ending password cracking and detecting password leakage. In: Proceedings
of the 31st Annual Computer Security Applications Conference, pp. 311-320 (2015)

. Backes, M., Berg, M., and Unruh, D.: A Formal Language for Cryptographic

Pseudocode. In: Logic for Programming, Artificial Intelligence, and Reasoning,
15th International Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008.
Proceedings. LNCS, pp. 353-376. Springer, Heidelberg (2008)

. Barthe, G., Grégoire, B., and Béguelin, S.Z.: Formal certification of code-based

cryptographic proofs. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, pp. 90-101. ACM (2009)

. Barthe, G., Grégoire, B., Heraud, S., and Zanella Béguelin, S.: Computer-Aided Se-

curity Proofs for the Working Cryptographer. In: Advances in Cryptology, pp. 71—
90. Springer (2011)

. Beringer, L., Petcher, A., Katherine, Q.Y., and Appel, A.W.: Verified Correctness

and Security of OpenSSL HMAC. In: USENIX Security Symposium, pp. 207-221
(2015)

. Bertoni, G., Daemen, J., Peeters, M., and Assche, G.V.: On the Indifferentiability of

the Sponge Construction. In: Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. LNCS, pp. 181-197.
Springer, Heidelberg (2008)

. Bertoni, G., Daemen, J., Peeters, M., and Assche, G.V.: Online Keccak specifica-

tions, (2009). http://keccak.noekeon.org/. 2009.

Blanchet, B., Abadi, M., and Fournet, C.: Automated Verification of Selected
Equivalences for Security Protocols. In: Symposium on Logic in Computer Sci-
ence (LICS’05), pp. 331-340. IEEE Comp. Soc. (2005)

Bortolozzo, M., Centenaro, M., Focardi, R., and Steel, G.: Attacking and Fixing
PKCS+#11 Security Tokens. In: 17th ACM Conference on Computer and Commu-
nications Security (CCS’10), pp. 260-269. ACM (2010)

http://keccak.noekeon.org/

20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Robert Kiiennemann and Hamed Nemati

Camilleri, A., Gordon, M., and Melham, T.: Hardware verification using higher-
order logic. Tech. rep., University of Cambridge, Computer Laboratory (1986)
Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: Foundations of Computer Science, pp. 136-145. IEEE Computer
Society (2001)

Dax, A., Tangermann, S., Kiinnemann, R., and Backes, M.: How to wrap it up -
A formally verified proposal for the use of authenticated wrapping in PKCS#11.
In: Computer Security Foundations Symposium (2019)

Delaune, S., Kremer, S., Ryan, M.D., and Steel, G.: Formal analysis of proto-
cols based on TPM state registers. In: 24th IEEE Computer Security Foundations
Symposium (CSF’11), pp. 66-82. IEEE Comp. Soc. (2011)

Delaune, S., Kremer, S., Ryan, M., and Steel, G.: A Formal Analysis of Authentic-
ation in the TPM. In: Formal Aspects of Security and Trust, pp. 111-125. Springer
Berlin Heidelberg(2011)

Delaune, S., Kremer, S., and Steel, G.: Formal Analysis of PKCS#11 and Propri-
etary Extensions. Journal of Computer Security 18(6), 1211-1245 (2010)
Deschamps, J.-P.: Hardware Implementation of Finite-Field Arithmetic. McGraw-
Hill, Inc. (2009)

Dworkin, M.J.: SHA-3 standard: Permutation-based hash and extendable-output
functions. Tech. rep., (2015)

Erkok, L., Carlsson, M., and Wick, A.: Hardware/software co-verification of crypto-
graphic algorithms using cryptol. In: Formal Methods in Computer-Aided Design,
2009. FMCAD 2009, pp. 188-191 (2009)

Gazi, P., Pietrzak, K., and Tessaro, S.: The exact PRF security of truncation: Tight
bounds for keyed sponges and truncated CBC. In: Annual Cryptology Conference,
pp. 368-387 (2015)

Hofheinz, D., and Shoup, V.: GNUC: A New Universal Composability Framework,
Cryptology ePrint Archive (2011). http://eprint.iacr.org/. 2011.

Jacomme, C., and Kremer, S.: An Extensive Formal Analysis of Multi-factor Au-
thentication Protocols. In: 31st IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pp. 1-15. IEEE Computer
Society (2018)

Jean, J.: TikZ for Cryptographers, https://www.iacr.org/authors/tikz/|(2016).
2016.

Kremer, S., and Kiinnemann, R.: Automated analysis of security protocols with
global state. Journal of Computer Security (2016)

Kremer, S., Kiinnemann, R., and Steel, G.: Universally Composable Key-Management.

In: European Symposium on Research in Computer Security, pp. 327-344. Springer
(2013)

Kiinnemann, R., Dupressoir, F., and Unruh, D.: Equivalence between while-loops
w/ 1:1 mapping, (2015). http://lists.gforge.inria.fr/pipermail/easycrypt-
club/2015-March/000292.html. Thread on the Easycrypt-club mailing list. 2015.
Kiinnemann, R., and Steel, G.: YubiSecure? Formal Security Analysis Results for
the Yubikey and YubiHSM. In: Proc. 8th Workshop on Security and Trust Man-
agement (STM’12). LNCS, pp. 257-272. Springer, Heidelberg (2012)

Kiisters, R., and Tuengerthal, M.: The IITM Model: a Simple and Expressive
Model for Universal Composability. Tech. rep. 2013/025, Cryptology ePrint Archive
(2013)

http://eprint.iacr.org/
https://www.iacr.org/authors/tikz/
http://lists.gforge.inria.fr/pipermail/easycrypt-club/2015-March/000292.html
http://lists.gforge.inria.fr/pipermail/easycrypt-club/2015-March/000292.html

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Verifying a Minimalistic Hardware Design for MAC Computation 21

Lochbihler, A.: Probabilistic Functions and Cryptographic Oracles in Higher Order
Logic. In: Programming Languages and Systems, pp. 503-531. Springer Berlin
Heidelberg (2016)

NV, G.: Smart card basics — A short guide (2019), https://www.gemalto.com/
companyinfo/smart-cards-basics.

Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols.
Journal of Computer Security 6(1-2), 85-128 (1998)

Pessl, P., and Hutter, M.: Pushing the Limits of SHA-3 Hardware Implementations
to Fit on RFID. In: Cryptographic Hardware and Embedded Systems - CHES 2013
- 15th International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings. LNCS, pp. 126-141. Springer, Heidelberg (2013)

Petcher, A., and Morrisett, G.: The Foundational Cryptography Framework. In:
Proc. of 4th International Conference on Principles of Security and Trust (POST’15),
pp. 53-72 (2015)

Scerri, G., and Stanley-Oakes, R.: Analysis of Key Wrapping APIs: Generic Policies,
Computational Security. In: 29th Computer Security Foundations Symposium,
pp. 281-295. IEEE Computer Society (2016)

Schmidt, B., Meier, S., Cremers, C., and Basin, D.: The TAMARIN Prover for
the Symbolic Analysis of Security Protocols. In: 25th International Conference on
Computer Aided Verification (CAV’13). LNCS, pp. 696-701. Springer, Heidelberg
(2013)

Shao, J., Qin, Y., Feng, D., and Wang, W.: Formal Analysis of Enhanced Author-
ization in the TPM 2.0. In: 10th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS ’15), pp. 273-284. ACM (2015)

Slind, K., Owens, S., Iyoda, J., and Gordon, M.: Proof Producing Synthesis of
Arithmetic and Cryptographic Hardware. Form. Asp. Comput. 19(3), 343-362
(2007)

Solar Designer: Password hashing at scale, (2012). http://www.openwall . com/
presentations/YaC2012-Password-Hashing-At-Scale/. Slides for a talk at YaC
2012 (see Slide 9). 2012.

Srinivas, S., Balfanz, D., Tiffany, E., Alliance, F., and Czeskis, A.: Universal 2nd
factor (U2F) overview. FIDO Alliance Proposed Standard (2015)

Unruh, D.: Unsoundness in definition of ‘glob M’, (2014). https://www.easycrypt.
info/trac/ticket/17132, Easycrypt Bug #17132. 2014.

Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., and Appel, A.W.:
Verified Correctness and Security of mbedTLS HMAC-DRBG. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’17, pp. 2007-2020. ACM (2017)

https://www.gemalto.com/companyinfo/smart-cards-basics
https://www.gemalto.com/companyinfo/smart-cards-basics
http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/
http://www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/
https://www.easycrypt.info/trac/ticket/17132
https://www.easycrypt.info/trac/ticket/17132

22 Robert Kiiennemann and Hamed Nemati

A Details on the real-word protocol definition

For messages from the environment, PROTO_def models the protocol for MAC
computation we defined in Section

PROTO mitbf (s,F) (EnvtoP (Mac m)) =
(let
(50, Tdyo, digo) =
RunMITB mitbf s [(T,F,ZERO,0)] ;
(sr, rdyr, digr) =
if rdyy <= F then
RunMITB mitbf sy [(F, T,ZERO,0)]
else (so, rdyo, digo) ;
(ss, rdys, digest) =
RunMITB mitbf sr
((F,T,ZERO,0) ::
PROCESS_MESSAGE_LIST
(Split (dimindex (: <)) m)) ;
(sq, rdyq, digq) =
RunMITB mithf ss
[(F, T,ZERO,0); (F,T,ZERO,0)]
in
((sq, F), Proto_toEnv digest))
Similarly, to insert a new key, the MITB is first brought into Ready state, and
then the key is input.

PROTO mitbf (s,F) (EnvtoP (SetKey k)) =
(let
(s1,rdy1, digi) = mitbf (s, T,F,ZERO,0)
in
if rdyy <= F then
(let
(82, rdys, diga) = mitbf (s1,F, T,ZERO,0) ;
(83, rdys, digs) =
mithf (sa2,F,F, k,dimindex (:¢))
in
((s3,F), Proto_toEnv 0w))
else
(let
(82, 1dy2, diga) =
mithf (s1,F,F, k,dimindex (:¢))
in
((s2,F), Proto_toEnv 0w)))

Besides the state of the MITB, the protocol stores a boolean corruption state.
The environment can signal that the host computer was corrupted, to switch its

Verifying a Minimalistic Hardware Design for MAC Computation 23

state from F to T.

PROTO mitbf (s,F) (EnvtoP Corrupt) =
((s, T), Proto_toEnv Ow)

From now on, all adversarial inputs are forwarded to the MITB.

PROTO mithf (s,T) (AtoP i) =
(let
(s_next, rdy, dig) = mithf (s, i)
in
((s_next, T), Proto_toA (rdy, dig)))

All other queries are ignored, e.g., honest queries after corruption or adversarial
queries before corruption.

B Simulator Formalization

In what follows we present SIM’s formal definition. The simulator SIM ignores
queries until the variable corrupted is set. Afterwards, it parses each message m
sent by the environment into an input (skip_inp, move_inp, block_inp, size_inp) €
B x B x {0,1}, x N,.. The purpose of the simulator is to imitate the MITB, for
this SIM uses the oracle H(k|/m). The output of SIM is a new state, and the
simulated output of the MITB, that is (ready_out,digest_out) € B x {0,1}".

When skip is set to true, if the simulator is in the ready state the content
of volatile memory is sent out and in all the other cases the simulator’s state
remains unchanged. If Move is set to true and when the simulator is in the ready
state it will move to absorbing state. However, if the control register is set to
other control-states the simulator outputs zero and moves to ready state.

SIM mitbf f (T,Ready,vm,m,F,c)

(EnvtoA (T, v, v1,12)) =

((T, Ready, vm, m,F, ¢), Adv_toEnv (T, vm))
SIM mitbf f (T, Absorbing, vm,m,F,c)

(EnvtoA (T, uvs,v4,v5)) =

((T, Absorbing, vm, m, F, ¢), Adv_toEnv (F,ZEROQ))
SIM mitbf f (T,Ready,vm,m,F,c)

(EnvtoA (F, T, v15,v16)) =

((T, Absorbing, vm, [, F, ¢), Adv_toEnv (F,ZERO))
SIM mitbf f (T,Absorbing, vm, m,F, ¢)

(EthOA (F, T, v17, ’1)18)) =

((T, Ready, ZERO, m, F, ¢), Adv_toEnv (T,ZERO))

24 Robert Kiiennemann and Hamed Nemati

More interesting part of the SIM’s definition is when the simulator is in the
absorbing state and receives some input.

SIM mitbf f (Absorbing, vmem,m,F,c) (EnvtoA (F,F,inp,inp_size)) =
if mp_size > T

then ((Absorbing, vmem, m,F, ¢), AtoEnv (F, ZERO))

else if inp_size = r

then ((Absorbing, ZERO, m || w2b inp, F, ¢), AtoEnv (F,ZERO))

else if inp_size < r — 4

then if inp_size = 0
then((Absorbing, vmem, [], F, ¢), AtoP(OracleQuery m))
else ((Absorbing, vmem, [],F, c),

AtoP (OracleQuery(m || TAK 'np_size(w2qzl((inp_sz’ze —1><0) inp)))))
else
(let state = if inp_size = r — 1 then AbsorbEnd110S1
else if inp_size = r — 2 then AbsorbEnd10S1
else AbsorbEnd0S1
in
((state, ZERO, m || TAKE inp_size (
w2b ((inp_size — 1><0) inp)),F,c), AtoEnv (F,ZEROQ))))

What happens in this case depends on the input size. When the size of the input
message is greater than r — 4 the simulator behaves like it is in the Skip state;
that is, simulator’s state remains unchanged. When the input size is equal to r
the simulator adds the full block to its buffer m, and if the input size is 0 or less
than equal to » — 4 the simulator queries the oracle and proceeds only when it
receives the FMAC’s response:

SIM mitbf f (—,vmem,m,F,c)
(PtoA (OracleResponse hashValue)) =
((Ready, hashValue, [],F, ¢), AtoEnv (T, hashValue))

Finally, if the input size is greater than r—4 and less than equal to r—1 part of
the input is taken and the simulator enters the corresponding AbsorbEnd(0S1|10S1|
110s1) state, in which depending on the size of the input either the simulator
queries the oracle or it behaves like it is in the Skip state.

In the AbsorbEnd(0S1|10S1|110s1) state depending on the size of the input
either the simulator queries the oracle or it behaves like it is in the Skip state.
For example the following snippet shows what happens when the simulator is
the AbsorbEnd0S1 state. Similar things also happens in states AbsorbEnd10S1 and
AbsorbEnd1108S1.

Verifying a Minimalistic Hardware Design for MAC Computation 25

F SIM mithf f (T,AbsorbEnd0S1, vm,m,F, c)
(EnvtoA (F,F,inp, inp_size)) =
if inp_size < dimindex (:¢) then
((T, AbsorbEnd0S1, vm,], F, ¢),
Adv_toP (OracleQuery m))
else ((T,AbsorbEnd0S1, vm,m,F,c),
Adv_toEnv (F,ZERO))

Note that in the definition above, dimindex(: <) is the HOL4 function that
returns the cardinality of the type (:).

If FMAC is corrupted, the adversary is able to overwrite the key. In this
case the simulator can skip querying the oracle and directly use the MITB for

simulation. After the key was overwritten, the MITB can be simulated using
MITB_STEP.

SIM mitbf f (T,Ready,vm,m,F,c)
(EnvtoA (F,F,inp,inp_size)) =
if inp_size < dimindex (:¢) then
(let
s = (Ready,f (ZERO @Q inp),ZERO)
in
((T,Ready, vm,m, T, s), Adv_toEnv (T,ZERO)))
else ((T,Ready, vm,m,F,c), Adv_toEnv (T, vm))
SIM matbf f (T,Ready,vm,m,T,s) (EnvtoA i) =
(let
(s_mext,rdy, dig) = mithf f (s, i)
in

((T, Ready, vm, m, T, s_next), Adv_toEnv (rdy, dig)))

Where ‘@Q’° is the word concatenation function.

C MITB Formalization

We base the MITB’s definition on a curried function MITB_FUN, which specifies
the behaviour abstractly. MITB_FUN uses ML-style pattern matching and there are
separate equations for the various combinations of values of cntl and the input
1. In what follows we try to briefly explain some of these equations. The first
case is when Skip appears in the input. In this case, the state stays the same:

MITB_FUN f (entl, pmem, vmem) Skip
= (cntl, pmem, vmem)

Starting in the ready state (i.e. cntl = Ready), if the input is set to Input key len
then the permanent memory pmem is set to f (ZERO@@Q@key), the volatile
memory vmen is set to ZERO, and the state remains ready. However, if the input
is Move then the next state is absorbing (cntl = Absorbing) with the permanent

26 Robert Kiiennemann and Hamed Nemati

memory unchanged and the volatile memory set to the value of the permanent
memory:

MITB_FUN f (Ready, pmem,vmem) (Input key len)
= (Ready,f (ZERO @@ Fkey),ZERO)

MITB_-FUN f (Ready, pmem,vmem) Move
= (Absorbing, pmem, pmem)

Furthermore, following cases specify what happens if Move is input whilst ab-
sorbing. In this case, the volatile memory is reset to zeros and the device returns
to the ready state:

MITB_FUN f (Absorbing, pmem, vmem) Move
= (Ready, pmem, ZERO)

MITB_FUN f (AbsorbEnd(0S1 |10S1 | 110S1),
pmem, vmem) Move = (Ready, pmem, ZERO)

The most complex part of MITB_FUN specifies the state transition corresponding to
absorbing a block. What happens depends on the input length. The complexity
here is due to the padding applied by the devices, as described in Section
If the block length is zero or it is less than equal to r — 4 the device applies
padding and enters to the state of ready. The only difference is that when the
block length is zero full-padding needs to be applied (cf. Section . If the last
block is one bit short of being a full block of length r (len = r — 1) then one bit
is added and the device enters the state of absorbing with cntl = AbsorbEnd0S1,
and on the next cycle the remaining padding (i.e., r — 1 zeros and a final T) is
added and the permutation f will be applied before transitioning back to the
ready state:

(Ready, pmem, f (vmem @ ZERO Q@ INT_MINw))

Where INT_MINw expresses the 0*1 block. Similar steps also taken if the input
block length is equal to r — 2 or r — 3. However, when the block size is exactly 7,
the device start absorption of a non-final block, which is done by: (i) appending
zero to it, (ii) XOR-ing the result with the current value of the volatile memory
vmem, (iii) applying the KECCAK permutation f to the result of the XOR-ing,
and finally (iv) updating the volatile memory with the result of applying the
function f. Also, note that if the condition of the last conditional expression
does not hold then the state stays the same (i.e. behave like Skip):

Verifying a Minimalistic Hardware Design for MAC Computation 27

MITB_FUN f (Absorbing, pmem, vmem) (Input blk len) =
(let apply = = f (vmem @ ZERO @Q z) ;
g len = (len — 1 >< 0) blk
&& SHA3_APPEND_ZERO_WORD len
I SHA3_APPEND_ONE_WORD len
| PAD_WORD (len + 2) ;
r = dimindex (:¢)
in
if len = 0 then
(Ready, pmem,
apply
(SHA3_APPEND_ZERO_WORD len
&& SHA3_APPEND_ONE_WORD len
| PAD.WORD (len + 2)))

else if len < r — 4

then (Ready, pmem, apply (g len))
else if len = r — 3

then (AbsorbEnd0S1, pmem, apply (g len))
else if len = r — 2

then (AbsorbEnd10S1, pmem, apply (g len))
else if len = r — 1

then

(AbsorbEnd110S1, pmem,

apply

((len — 1 >< 0) blk
&& SHA3_APPEND_ZERO_WORD len))
else if len = r then (Absorbing, pmem, apply blk)
else (Absorbing, pmem, vmem))

The following auxiliary functions are used in the definition of MITB_FUN: (i)
SHA3_APPEND_ZERO_WORD, which returns a word that is one except at the
position given as parameter, (ii) SHA3_APPEND_ ONE_WORD, which returns
a word that is zero expect at the position given as parameter plus 1, and (iii)
the padding function PAD_-WORD. Moreover, (h ><) w represents the HOL4
bit extraction function for input word w, and h and [are the upper and lower
bound respectively for the number of extracted bits.

Based on the MITB_FUN’s definition, we then define the function MITB which
is similar to MITB_FUN except that it decodes the inputs into abstract commands
Skip, Move and Input bk len.

28 Robert Kiiennemann and Hamed Nemati

MITB f (entl, pmem, vmem)
(skip, move, block, size) =
MITB_FUN f (cntl, pmem, vmem)
(if skip = T then Skip
else if move = T then Move
else if size < r then
Input block size
else Skip)

Then we proceed to define a step function which yields the next state of the
system. The step function behaves like the MITB, but defines the output, too.
It takes a permutation f, current state of the MITB denoted as s, and the input
i = (skip_inp, move_inp,block_inp, size_inp) and returns the next state of the
MITB together whit an output. It’s output depends on the state that the device
enters in the next cycle.

MITB.STEP f s i =
let (cntl’, pmem/, vmem’) = MITB f s 4;
digest =
(if cntl’ = Ready
then (T,(r — 1><0) vmem/)
else (F,ZERO))
in ((entl’, pmem’, vmem’), digest)

D Applications

Due to the simplicity of its design and the absence of a random number generator,
the MITB is incredibly cheap to produce. Its main use is secure password storage,
but it is amenable to many applications. For each of the applications below, we
formulate improved resilience against host-compromise in terms of application-
specific properties like password security against offline attacks or perfect forward
security.

All properties we mention have been verified using off-the-shelf protocol veri-
fication tools. These tools operate in the symbolic model, where cryptographic
outputs are abstracted using a term algebra. E.g., in the following examples, a
MAC is a term of form mac(k, m), where mac is a function symbol, and k, m
themselves are terms. In the symbolic model, the adversary’s deductive capabil-
ities are modelled as a set of deduction rules or, equivalently, as a set of equations
that induces an equivalence relation among terms. As usual, the properties of a
MAC are modelled by the absence of a deduction rule that deconstructs, i.e., al-
lows the deduction of subterms of, terms of form mac(k, m). This reflects that (a)
that MACs do not expose the MACed message or key, (b) MACs are determin-
istic and may leak whether two equivalent messages were MACed with the same
key (as there is no random value represented in this term, except for the key k)
and (c) if the key is known, MACs can be verified by recomputing the term (given

Verifying a Minimalistic Hardware Design for MAC Computation 29

k and m, it is always possible for compute mac(k, m), as for any other function
symbol). Due to the guarantees provides by FMAC, these models can keep the
key k secret, even if the attacker gains control over its host system. The relation
between FMAC and the symbolic model we used remains informal. Proving the
correspondence is the subject of computational soundness [rogaway-+abadi].
As of now, no computational soundness result has been machine-checked. The
same holds for the correctness of the verification procedures we used. (There are
machine-checked formalizations of the symbolic model [scyther-proof, 32|, but
they provide a much lower degree of automation.)

We used three different verification tools. Each employs a slightly differ-
ent formalism to express the protocol or the security property. Hence, we refer
to their respective formalization for details (ProVerif [10], tamarin [36] and
SAPIC [25]), and try to keep the presentation intuitive.

Secure password storage: All businesses that store password data need to
secure these password databases for the case where they get stolen. To name but
a few-high profile cases of stolen password databases: the Playstation Network
(77TM entries) in 2011, LinkedIn (6,5M entries) and Last.fm (8M entries) in
2012, Adobe (152M entries) in 2013, Ashley Madison (37M entries) in 2015, and
MyHeritage (92M entries) in 2018. Some of these breaches were discovered years
after they occurred, when the leaked databases started circulating on the black
market. Hence it is likely, that there are more recent events that are not known
yet.

Besides popular (yet not widely enough adopted) best practices like salting
or key-derivation, security experts advise the introduction of a ‘local parameter’
to the computation, i.e. a high-entropy value used in hash computation that is
stored on a separate device which provides only limited access [39]. An attacker
performing brute-force attacks on a stolen password database would then be
required to guess the local parameter along with the password. Among various
options, including FPGAs and GPUs, hardware tokens seem to be the most
promising candidate [39], however, the ability to audit these devices is a key
requirement. For many commercial tokens, only a black-box audit is possible.
The MITB provides the required functionality, while also providing a formally
verified design, which goes beyond typical audits.

To store passwords securely, the MITB is initialised with a fresh key during
set-up, and then used to compute MACs on the hashed and salted password.
These MACs are stored in the password file upon registration. To validate a
password, the MAC is recomputed. The hash is used to maintain compatibility
with schemes where only the hashed password is submitted over the wire. The
salt is used to avoid leaking whether two users have the same password, as the
MAC is deterministic. We used ProVerif’s diff-equivalence [10] to show strong
secrecy, i.e., resistance against offline password guessing in the Dolev-Yao model.
Strong secrecy is formulated as the ability to distinguish between two systems. In
the first, the adversary obtains, for each secret password pw in the database, the
salt s, the MITB’s output on the hashed and salted secret h(pw, s) and pw in the
clear. Like mac, h is a function symbol, and there is no equation for obtaining

30 Robert Kiiennemann and Hamed Nemati

a subterm of h(pw,s). In the second system, the adversary again obtains s and
the MITB’s output on h(pw, s), but a completely different pw’ in the clear. The
equivalence of these systems means that, even if the adversary can make a guess
on pw, she cannot verify whether she was right (first system) or wrong (second
system). This renders offline attacks impossible. Hence, for a password database
with k entries, we show equivalence between

vk; ¥ (vpw; vs; (out(mac(k, h(pw, s))); out(s) | out(pw)))
and
vk; ¥ (vpw; vs; (out(mac(k, h(pw, s))); out(s) | vpw'; out(puw’)))

Here, vk; P chooses a fresh name k, akin to drawing a random key. P | Q
denotes parallel composition, i.e., processes P and @ running in parallel. P is
an unbounded number of instances of P composed in parallel. Finally, out(t)
outputs the term t on the public channel.

The verification takes less than a second for an unbounded number of pass-
wordd™]

The MITB applies even to the more elaborate password storage scheme by
Almeshekah et.al, where ‘ersatzpasswords’ are computed from a user’s pass-
word [3]. To detect database leaks, ersatzpasswords mimic the appearance of
user generated passwords and raise an alarm if they are used for login. Their im-
plementation uses the YubiHSM, which costs about $ 650 and could be replaced
by the MITB[]

Establishing a secure channel: Secure channels are usually established by
performing key-exchange and then encrypting the communication with the res-
ulting key. Key-exchange requires some method of authentication to ensure the
key is exchanged with the intended communication partner, otherwise it would
be vulnerable to a man-in-the-middle attack. The signed Diffie-Hellman key-
exchange protocol is such an example, and used, e.g., in TLS and IPsec. Com-
munication partners that share a key on the MITB can use MACs instead of
signatures to ensure the integrity of the key-exchange, and thus establish a chan-
nel that is confidential against active attacker. More so, confidentiality holds even
if the MITB is lost after the communication session (perfect forward security).
We demonstrate this for a Diffie-Hellman key exchange.

For G a suitably chosen group and g a public generator for G, two parties
randomly pick non-zero elements of G, x and y, respectively. They exchange g*
and ¢g¥. Now both parties can compute the same key (¢*)¥ = ¢*¥ = (¢g¥)*. As
the decisional Diffie-Hellman problem, i.e., distinguishing ¢™¥ from a random
group element, is widely believed to be impossible to solve, this protocol is

13 Computed on a MacBook Pro with 3,1GHz Intel i7 and 16GB RAM.

4 Pessl and Hutter managed to implement SHA-3 on an RFID token [33], citing cost
estimates of about $0.05. As the MITB’s state machine and key storage does not
fundamentally add to that, the production cost of the MITB will likely be dominated
by the bus technology connecting it to its host, e.g., USB.

Verifying a Minimalistic Hardware Design for MAC Computation 31

MITB M User U Website W

Sign-up phase

challenge; & {0,1}"
(W, login, password, challenge,)

r; = mac(k, (W, login, password, challgnge,))

Ti

| store challenge,, r;

Login for url url and session s .
B - login, password

| choose challenge,; from store

challenge;

W, login, password, challenge;

Tj

h((challenge;, url, W),r;)

Figure 7. U2F protocol for user U using MITB M to sign up and login on website W,
simplified.

32 Robert Kiiennemann and Hamed Nemati

secure against passive adversaries. To provide security against active adversaries,
instead of signing the message, two parties that have managed to synchronise
their keys prior to communication can also use the MITB to set up a secure
channel, MACing the messages instead of signing them. Once a channel is set
up, it provides very strong guarantees that go beyond the secrecy of the key:

— perfect forward secrecy: even if the adversary gains control over one of the
MITBs, all sessions keys established prior to this event remain secret.

— post-compromise security: even if the adversary temporarily gains control
over one of the MITBs, once the participants come together and set up a
new key, future session keys will again remain secure.

We used the SAPIC/tamarin |36, 25| toolchain for protocol verification to
establish both properties for an unbounded number of sessions. The proof is
automated and terminates in 151658 The model is listed in Appendix

This scheme is limited to the communication between two communication
partners, both need to agree on a key during key-setup. It thus applies to high-
security scenarios only. For end-user communication, the following protocol is
more realistic.

Two-factor authentication: We demonstrate that the MITB is compatible
with the FIDO standard for universal 2nd factor authentication [40]. The goal
is that a user can log in to a webserver with a username and password, and a
so-called second factor, typically a piece of hardware she owns. The standard
is tailored to devices that create digital signatures, however, we managed to
integrate the MITB by using a method based on one-time passwords. Upon
sign-up, the user generates random challenges ci,...,c, and pre-computes the
responses
r; = mac(k, (W, login, password, ¢;)),

where W is the domain name of the web server, login and password the user’s
password and login and (-) a suitable encoding for lists. These responses can only
be computed using the MITB. The users sends these pairs ¢;,r; to the server,
who stores them.

The responses can be thought of as one-time passwords. To login, the server
chooses an arbitrary challenge, and the user recomputes the response to this
challenge. Hence, the user does not need to keep additional state.

We again used SAPIC/tamarin to establish perfect forward security and post-
compromise security for authentication, i.e., the property that any successful
login on the webserver was initiated by the user. We model a single server with
an unbounded number of users, each running an unbounded number of sessions:

! Pserver | !<Vk; !PUser)~

The user process choses a fresh login and password. Afterwards, it can perform
setup and authentication, repeatedly and in any order.

!PUser = Z/login, password; (Pusetup | Plauth | Pucorrupt)~

Plsetup is defined as follows:

Verifying a Minimalistic Hardware Design for MAC Computation 33

Pserver := Piauth =
in(url); in(tls_session); in(wrl); in(tls_session);
in ({ login , password)) ; out((login , password));

event Request(login , url, tls_session);
in(handle); // adversary decides which
challenge to use

lookup (’F_Server’, login ,handle) as in (challenge) ;
entry in out(h({ challenge, url, tls_session) ,mac(k,
out(fst (entry)); (’Server’, login , password, challenge))
in (xsignature) ;))

if xsignature = h(fst(entry), url,
tls_session ,snd(entry)) then
delete (’F_Server’, login , handle)

)
event Access(login , url,
tls_session , fst (entry))

Figure 8. Authentication process for the server (left) and the client (right).

lock ’setup’;
in (handle);v challenge ;
event FreshSetup(challenge);
insert (’Server’, login , handle),
(challenge ,mac(k,(’Server’ , login , password, challenge))) ;
unlock ’setup’

Setup is protected by a Dijkstra-style semaphore to ensure that it can never
run in parallel with an authentication process. It stores a randomly chosen
challenge and the corresponding response on the server’s database. Both lock-
Junlock and insert/lookup are SAPIC constructs extending the applied-m pro-
tocol to deal with stateful protocols such as this one. The construct insert z,y
stores term y at a position x in a global, dictionary-like store. The construction
lookup x as y in P else () retrieves the value at position x at a later point in
time. It reduces to P with the last value inserted at x in place of y. If no such
value exists, it reduces to Q.

Figure[§]is a straight-forward modelling of the server and user authentication
protocol described in Figure [7] The adversary gets to choose the url and TLS
session, as well as the order, in which the server sends the challenge. The server
sends the pre-recorded challenge and, in place of a signature, a hash on the
challenge, the url, the TLS session and the response. Recall that the response is
a MAC computed by the MITB.

If the client’s host is compromised, the adversary can compute MACs, but
thanks to the MITB, she does not obtain the key k itself:

Pycorrupt = lock ’setup’; event Corrupt();
in(z); out(mac(k,z));
unlock ’setup’

34 Robert Kiiennemann and Hamed Nemati

We show the following property:

Theorem 2 (Post-compromise and forward security). For all traces of
the process just described above, it holds that any successful login, i.e., event
Access(login, url, tlssession, challenge), implies either a genuine login request,
i.e., Request(login, url, tlssession), or that the client’s host was compromised,
i.e., the event Corrupt() occured, however, if that is the case, then this event must
have occured after the challenge was set up, i.e., event FreshSetup(challenge),
and before the aforementioned Access-event.

Observe that the constraints on the Corrupt-events imply that (a) any chal-
lenge that is set up after the last corruption event recovers the authentication
property (post-compromise security), and (b) if a challenge has been used for
authentication, it cannot be used for future authentication, even if the user’s
host is compromised afterwards (forward security). SAPIC/tamarin proves this
theorem without any user intervention or helping lemmas within QSE

E Listing for Section

theory MACedDH_PCS
begin
section{x Diffie — Hellman with MAC—in—the— Box }

builtins : diffie —hellman
functions : mac/2

let Initiator =
let m1 = (1, $I,$R, *g’ " “F_ekl)
mim = mac(k,ml1)

m2 = (’2,81,Y)
in
lock ’setup’;
lookup 'mitb_init’ as k in
v "F_ekl;

out({mi,mim));

in ({(m2,m2m));

if m2m = mac(k,m2) then
event SessionKey($L3R,Y " "F_ekl);
unlock ’setup’

let Responder =
let m1 =1, $I,$R, X)
m2 = ("2",81,’g’ ~ "F_ekR)
m2m = mac(k,m2)
in
lock ’setup’;

Verifying a Minimalistic Hardware Design for MAC Computation 35

lookup 'mitb_resp’ as k in

v "F_ekR;

in({(m1,mim));

if mIm = mac(k,m1) then
out((m2,m2m));
event SessionKey($L,$R, X" "F_ekR);
unlock ’setup’

let Setup = (lock ’setup’;new kyinsert 'mitb_init’,k;insert 'mitb_resp’k;event
FreshSetup(); unlock ’setup’)——(lock ’setup’; lookup ’mitb_init’ as k
in event Corrupt(); in(z); out(mac(k,z)); unlock ’setup’)
| (lock ’setup’; lookup ’mitb_resp’ as k in event Corrupt(); in(z);
out(mac(k,z)); unlock ’setup’)(Setup | Initiator | Responder)

// Post—compromise and Perfect— Foward—Secrecy
lemma PC_PF_Secrecy:
N I R sessKey i k.
SessionKey(I,R,sessKey) @ i A
K(sessKey) @ k
= (
I ¢ . Corrupt()@c Ne<i
A (Y f. PreshSetup()@f = f< cV i< f)
) »

end

	MAC-in-the-Box: Verifying a Minimalistic Hardware Design for MAC Computation

