1904.07275v2 [cs.CR] 16 Jul 2020

arxXiv

PrivacyGuard: Enforcing Private Data Usage Control
with Blockchain and Attested Off-chain Contract
Execution

Yang Xiao'*, Ning Zhang?, Jin Li®, Wenjing Lou', and Y. Thomas Hou'!

! Virginia Polytechnic Institute and State University, VA, USA
2 Washington University in St. Louis, MO, USA
3 Guangzhou University, Guangzhou, China

Abstract. The abundance and rich varieties of data are enabling many trans-
formative applications of big data analytics that have profound societal impacts.
However, there are also increasing concerns regarding the improper use of indi-
vidual data owner’s private data. In this paper, we propose PrivacyGuard, a sys-
tem that leverages blockchain smart contract and trusted execution environment
(TEE) to enable individual’s control over the access and usage of their private
data. Smart contracts are used to specify data usage policy, i.e., who can use what
data under which conditions and what analytics to perform, while the distributed
blockchain ledger is used to keep an irreversible and non-repudiable data usage
record. To address the efficiency problem of on-chain contract execution and to
prevent exposing private data on the publicly viewable blockchain, PrivacyGuard
incorporates a novel TEE-based off-chain contract execution engine along with a
protocol to securely commit the execution result onto blockchain. We have built
and deployed a prototype of PrivacyGuard with Ethereum and Intel SGX. Our
experiment result demonstrates that PrivacyGuard fulfills the promised privacy
goal and supports analytics on data from a considerable number of data owners.

Keywords: Privacy, data access and usage control, trusted execution, blockchain,
smart contract

1 Introduction

The recent emergence of big data analytics and artificial intelligence has made life-
impacting changes in many sectors of society. One of the fundamental enabling com-
ponents for the recent advancements in artificial intelligence is the abundance of data.
However, as more information on individuals is collected, shared, and analyzed, there
is an increasing concern on the privacy implication. In the 2018 Facebook-Cambridge
Analytica data scandal, an API, originally designed to allow a third party app to access
the personality profile of limited participating users, was misused by Cambridge An-
alytica to collect information on 87 million of Facebook profiles without the consent
of the users. These illicitly harvested private data were later used to create personal-
ized psychology profiles for political purposes [21]. With increasing exposure to the

* To present in the 25th European Symposium on Research in Computer Security (ESORICS
2020), September 14 - 18, 2020.



2 Y. Xiao et al.

privacy risks of big data, many now consider the involuntary collection of personal in-
formation a step backward in the fundamental civil right of privacy [19], or even in
humanity [43,44]. Yet, driven by economic incentives, the collection and analysis of
the personal data continue to grow at an amazing pace.

Individuals share personal information with people or organizations within a partic-
ular community for specific purposes; this is often referred to as the context of pri-
vacy [33]. For example, individuals may share their medical status with healthcare
professionals, product preferences with retailers, and real-time whereabouts with their
loved ones. When information shared within one context is exposed in another unin-
tended one, people may feel a sense of privacy violation [32]. The purposes and values
of those contexts are also undermined. The contextual nature of privacy implies that
privacy protection techniques need to address at least two aspects: 1) what kind of in-
formation can be exposed to whom, under what conditions; and 2) what is the “intended
purpose” or “expected use” of this information.

Much research has been done to address the first privacy aspect, focusing on data
access control [23,4,49,53] and data anonymization [16,29,41,28]. Only recently, there
have been a few works that attempted to address the second aspect of privacy from the
architecture perspective [61,60,38,17,14,6]. In fact, many believe that the prevention of
this kind of “second-hand” data (mis)use can only be enforced by legal methods [13].
Under the current practice, once an authorized user gains access to the data, there is
little control over how this user would use the data. Whether he would use the data for
purposes not consented by the original data owner, or pass the data to another party (i.e.,
data monetization) is entirely up to this new “data owner”, and is no longer enforceable
by the original data owner.

Our Contribution Building upon our previous work [55], we present the design,
implementation and evaluation of PrivacyGuard in this paper. PrivacyGuard empowers
individuals with full control over the access and usage of their private data in a data
market. The data owner is not only able to control who can have access to their private
data, but also ensured that the data are used only for the intended purpose. To realize
this envisioned functionalities of PrivacyGuard, three key requirements need to be met.
First, users should be able to define their own data access and usage policy in terms
of to whom they will share the data, at what price, and for what purpose. Second, data
usage should be recorded in a platform that offers non-repudiation. Third, the actual
usage of data should have a verifiable proof to show its compliance to the policy.

Blockchain, the technology behind Bitcoin [31] and Ethereum [18], has exhibited
great potential in providing security and privacy services. Smart contract is a program
that realizes a global state machine atop the blockchain and has its correct execu-
tion enforced by the blockchain’s consensus protocol. PrivacyGuard enables individual
users to control the access and usage of their data via smart contract and leverages the
blockchain ledger for transparent and tamper-proof recording of data usage.

While smart contract and blockchain appear to be the perfect solution, there are
fundamental limitations if applied directly. First, data used by smart contracts are up-
loaded in the form of blockchain transaction payload, which is not designed to hold
arbitrarily large amount of data due to communication burden and scalability concerns
[31,12]. Second, smart contracts are small programs that have to be executed by all par-



PrivacyGuard: Enforcing Private Data Usage Control 3

ticipants in the network, which raises serious computational efficiency concerns. For the
same reason, existing platforms such as Ethereum are not purposed to handle complex
contract programs [51]. Last but not least, data used by smart contracts are available
to every participant on blockchain by design, which conflicts with the confidentiality
requirement of user data. Existing secure computation techniques for preserving con-
fidentiality and utility of data, such as functional encryption [5], can nonetheless be
prohibitively expensive for the network.

To tackle data and computation scalability problems, PrivacyGuard splits the private
data usage enforcement problem into two domains: the control plane and the data plane.
In the control plane, individual users publish the availability as well as the usage policy
of their private data as smart contracts on blockchain. Data consumers interact with
the smart contract to obtain authorization to use the data. Crucially, the actual data of
the users are never exposed on the blockchain. Instead, they are stored in the cloud
in encrypted forms. Computation on those private user data as well as the provision
of secret keys are accomplished off-chain in the data plane with a trusted execution
environment (TEE) [30,2] on the cloud.

When a data contract’s execution is split into control and computation, where the
computation actually takes place off-chain, several challenges occur. First, the correct-
ness of the contract execution can no longer be guaranteed by the blockchain consensus.
To this end, we propose “local consensus” for the contracting parties to establish trust
on the off-chain computation via remote attestations. Second, the execution of contract
is no longer atomic when the computation part is executed off-chain. We design a multi-
step commitment protocol to ensure that result release and data transaction remain an
atomic operation, where if the computation results were tampered with, the data trans-
action would abort gracefully. Lastly, private data are protected inside the TEE enclave
and secrets are only provisioned when approved according to the contract binding.

We implemented a prototype of PrivacyGuard using Intel SGX as the TEE technol-
ogy and Ethereum as the smart contract platform. We chose these two technologies for
implementation due to their wide adoption. Our design generally applies to other types
of trusted execution environments and blockchain smart contract platforms. The plat-
form fulfills the goal of user-define data usage control at reasonable cost and we show
that it is feasible to perform complex data operations with the security and privacy pro-
tection as specified by the data contract.

To summarize, we make the following contributions in this paper:

— We propose PrivacyGuard, a platform that combines blockchain smart contract and
trusted execution environment to address one of the most pressing problems in big
data analytics—trustworthy private data computation and usage control. Privacy-
Guard essentially allows data owners to contribute their data into the data market
and specify the context under which their data can be used.

— We propose a novel construction of off-chain contract execution environment to
support the vision of PrivacyGuard, which is the key to improving the execution
efficiency of smart contract technology and enabling trustworthy execution of com-
plex contract program without solely relying on costly network consensus.

— We implemented a prototype of PrivacyGuard using Intel SGX and Ethereum smart
contract and and deployed it in a simulated data market. Our evaluation shows that



4 Y. Xiao et al.

PrivacyGuard is capable of processing considerable volumes of data transactions
on existing public blockchain infrastructure with reasonable cost.

2 Background

Blockchain and Smart Contract Blockchain is a recently emerged technology used
in popular cryptocurrencies such as Bitcoin [31] and Ethereum [18]. It enables a wide
range of distributed applications as a powerful primitive. With a blockchain in place,
applications that could previously run only through a trusted intermediary can now
operate in a fully decentralized fashion and achieve the same functionality with com-
parable reliability. When the majority of the network’s voting power (hashing power,
stake value, etc.) are controlled by honest participants, the shared blockchain becomes
a safe and timestamped record of the network’s activities. The conceptual idea of pro-
grammable electronic “smart contracts” dates back nearly twenty years [42]. When
implemented in the blockchain platform (eg. Ethereum), smart contracts are account-
like entities that can receive transfers, make decisions, store data or even interact with
other contracts. The blockchain and the smart contract platform however have several
drawbacks in transaction capacity [12], computation cost [9,26], as well as privacy of
user and data [27,26].

Trusted Execution Environment Creating vulnerability-free software has long been
considered a very challenging problem [40]. Researchers in the architecture community
in both academia [11] and industry [2,30] have embraced a new paradigm of limiting
the trusted computing base (TCB) to only the hardware, realizing a trusted execution
environment (TEE). The well-known Intel SGX [30] is an instruction set extension
to provide TEE functionalities. Applications are executed in secure containers called
enclaves. The hardware guarantees the integrity and confidentiality of the protected ap-
plication, even if the platform software is compromised. TEE has recently been adapted
as a powerful tool to support blockchain-based applications [22,54,25,9].

3 PrivacyGuard Overview

3.1 System Goal and Architecture

The vision of PrivacyGuard is to not only protect data owner privacy but also promote
a vibrant data sharing economy, in which data owners can confidently sell the right to
use their data to data consumers for profits without worrying about data misuse. To
realize this, there are three specific goals. First, data encryption/decryption are fully
controlled by data owners. Untrusted parties (eg. cloud storage and data consumers)
can not obtain or possess data owners plaintext data. Second, Data owners are able to
control who can access which data items under what conditions for what usage. The
data usage records should be non-repudiable and auditable by data owners. Third, the
security mechanism of our system should be able to capture user-defined policies and
enforce the compliance of the policies during the execution of data access.

Fig. 1 shows the system architecture of PrivacyGuard. Although we have been using
the term users to refer to both individuals and organizations, we differentiate two roles



PrivacyGuard: Enforcing Private Data Usage Control 5

Control Plane

()
4

Individual Data Owner

~
pﬁ"" SN ¢ PN

[

[ ) Blockchain
Data Owners Data Broker
1l 1
Data Plane
! 1
Data ] Off-Chain =
Broker j4==== Contra'ct Execution ----»
Server EnwroAnment Data Consumer
: Server
--------- iDataAgent /<~ =.:
L e
yp =]
User Data Source Cloud Storage
Computation User Trust l Blockchain T/ Off-Chain n Data
- Result/Commit " Data Relationship Operation Operation —g Contract

Fig. 1. System architecture for PrivacyGuard framework.

that an user in the data market can take. We refer to the individual or organization
that owns the data as data owner (DO) and the entity that needs to access the data
as data consumer (DC). Classified by the assigned responsibility, there are three main
functional components in the PrivacyGuard framework:

Data Market Data market is an essential PrivacyGuard subsystem that supports the
supply, demand and exchange of data on top of blockchain. For data access and usage
control, DO can encode the terms and conditions pertaining to her personal data in a
data contract, and publish it on a blockchain platform such as Ethereum. Data usage by
DC is recorded via transactions that interact with the data contract.

iDataAgent (iDA) and Data Broker (DB) iDA is a trusted entity representing an
individual DO and responsible for key management for the DO. It also participates in
contract execution by only provisioning the data key material to attested remote entities.
Since it is often not realistic to expect individual DO to be connected all the time, iDA
can also be instantiated as a trusted program in a TEE-enabled cloud server. To address
the inherent transaction bandwidth limit of the blockchain network, DB is introduced
to collectively represent a group of users.

Off-chain Contract Execution Environment (CEE) This off-chain component
executes data operations contracted between DO(s) and DC in a TEE enclave. The
trusted execution guarantees correctness as if it was executed on-chain. The computa-
tion result is securely committed to DC while enforcing the contract obligation.

3.2 PrivacyGuard High-Level Workflow

The workflow of PrivacyGuard proceeds in three stages which can function concur-
rently. Stage 1 and 2 involve the supply side (DO, iDA, DB) that prepares the data
items and usage contracts while stage 3 characterizes the regular operation.



6 Y. Xiao et al.

Stage 1: Data Generation, Encryption, and Key Management In this stage, a
DO’s data are generated by its data sources and collected by its iDA, who passes the
encrypted data to the cloud storage. Keys for data en/decryption are generated by the
DO via interface to iDA and managed by iDA. For a group of users with common data
types, they can delegate their trust to a DB by remote-attesting the DB’s enclave and
provision data keys to the enclave.

Stage 2: Policy Generation with Smart Contract In PrivacyGuard, individual
DOs can define their own usage policies for their private data in DO contract (Cpo).
The policies encoded usually includes the essential components for privacy context,
such as data type, data range, operation, cost, consumer, expiration, etc. The opera-
tion, which specifies intended usage of the targeted data, can be an arbitrary attestable
computer program. This paradigm grants DOs fine-grained control on the data usage
policy and the opportunity to participate in the data market independently. However, it
requires ample transaction processing capacity from the blockchain network that scales
in the number of DOs. Alternatively, the DB-based paradigm uses DB as a trusted del-
egate for a large number of DOs. DB represents the DOs in the blockchain by curating
a DB contract (Cpgp) that accepts data registries from DOs and advertising their data
in bundles. The encoding of Cpo and Cpg will be elaborated in Section 4.

Stage 3: Data Utilization and Contract Execution DC invokes a Cpo (or Cpg)
for permission to use certain private data of the targeted DO(s) for a specific operation,
and deposits payment onto the contract. If permission is granted on the blockchain, DC
instructs CEE to load the enclave program for the contracted operation whose checksum
is specified in the contract. Then both the DC and iDA (or DB) proceed to remote-attest
the CEE enclave. This essentially allows the two parties to reach a “local consensus”
on CEE’s trustworthiness that enables the off-chain execution of the on-chain contract.
When the attestations succeed, iDA (or DB) provisions data decryption keys to the
CEE enclave to enable data operation within the enclave. When the operation finishes,
the enclave releases the result in encrypted form and erases all the associated data and
keying materials. To achieve a fair and atomic exchange that DC gets the decrypted
result while DO(s) get the payment, we propose a commitment protocol for the two
sides which ensures the atomic exchange only when they agree upon each other. The
detailed design of the commitment protocol will be explained in Section 5.

3.3 Threat Model and Assumptions

We assume all entities act based on self-interest and may not follow the protocol. How-
ever, to maintain a reasonable scope for the paper, we assume DO will not provide
meaningless or falsified data intentionally. It is possible to encode rules in smart con-
tract to penalize DOs for abusing the system with bad data. Furthermore, we assume
the security systems, i.e. the blockchain and TEE, are trustworthy and are free of vul-
nerability. Specifically, in the control plane, we assume the blockchain infrastructure is
secure that adversaries do not control enough resources to disrupt distributed consen-
sus. We also assume smart contract implementations are free of software vulnerabil-
ity. In the data plane, we assume the TEE is up to date, and particularly, Intel SGX,
is secure against malicious attack from the operating system. We recognize that TEE



PrivacyGuard: Enforcing Private Data Usage Control 7

implementations are not always perfect, and previous work has demonstrated side chan-
nel information leakage on the SGX platform alone [45,50,56,58,46,52,57], preventing
such attacks is an important but orthogonal task. We also assume that all data operations
requested by DC have been ratified by trusted sources and a cryptographic checksum of
the program binary is sufficient for PrivacyGuard to check the data operation integrity.

4 Data Market of User-Defined Usage with Blockchain

The intuition behind the data market is to enable fair and transparent data transactions
between DO and DC. In PrivacyGuard, DOs advertise private data items available for
knowledge extraction on blockchain smart contracts. DC shops for a desirable data set
and contract for his analytics. To start the data transaction, DC invokes the data contract
and deposits a payment. The sales of knowledge extraction rights on private data are
fulfilled that DO obtains the payment while the DC obtains the knowledge. The data
transaction is then recorded in the blockchain with transparency. To enable user-defined
access and usage control, the data contract, needs to encode DO’s data usage policy
including how data can be used by which DC at what cost. Next we present the our data
contract design in PrivacyGuard in a constructive manner.

4.1 Encoding Data Usage Policy with Smart Contract

Basic Data Usage Contract In the conventional data sharing scenario, the data ac-
cess policy often includes attributes such as type of the data, range or repository of the
data, DO and DC credentials. For example, we assume patient X with public key pair
(pkx,skx) has three types of medical data: radiology data, blood test data and mental
record data. X is only willing to share his radiology data (with descriptor pData) with
urology specialist .S with public key pks. X can treat S as a DC and specify an access
policy P in a data access contract: Cxpa)y = {P = {pData,pks}, Sigsy (P)}.
This encoding, however, specifies only data access but no obligation of the DC once
access is granted. The DC could share the data with other parties against the original in-
tention of the DO. To enable fine-grained control on how data is used, obligations need
to be attached to the policy. For instance, if X only wants S to run a certain operation
op on the data, then X can encode a new data usage contract in the following form:
Cxmu) = {P = {pData, op, pks}, Sigsi (P)}.

Enabling Data Market Economy A key feature of PrivacyGuard is to encour-
age DOs to share private data for public welfare as well as financial rewards without
concerning privacy leakage or data misuse. Building on top of the success of cryptocur-
rency, the blockchain smart contract platform allows DO and DC to transact on the
usage of data with financial value attached. DO can specify a price tag $pr (in cryp-
tocurrency) in the policy. To further ensure a fair exchange that DC gets the knowledge
and DO gets the payment, certain control logic should be instated in the form of smart
contract functions. We call these functions and other contract metadata the contextual
information, denoted ctx. Back to the previous example, we now have Cxpuy) =
{P = {pData,op, $pr, pks}, ctx, Sigsk (P||ctz)}. In blockchain domain, the signa-
ture is conveniently fulfilled by X’s signature in the contract creation transaction.



8 Y. Xiao et al.

Transparent Tracking of Data Utilization For the system to provide transparent
data utilization tracking and policy compliance auditing, each data transaction needs to
be recorded in a tamper-resistant and non-repudiable manner. In PrivacyGuard, contract
functions (part of ctx, invoked via blockchain transactions) are used to facilitate the
recording of data utilization. Since the blockchain ledger is publicly managed via global
consensus and unforgeable, contract function invocations in blockchain transactions can
provide non-repudiable records on data utilization.

Algorithm 1: Data Owner’s Smart Contract Cpo Pseudocode

Function Constructor()  // Contract creation by DO with a policy
Parse policy as (dataset, price, operation, DC List, requestTimeout) ;
pDS « policy.dataset ;

pPrice < policy.price ;

pOP <« policy.operation ;

pDCL < policy.DCList ;

pRTO < policy.requestTimeout ;

R+« [] // Usage records;

DO < creator;

Function Request(op, data,$f) // Callable by DC

if op = pOP and sender € pDCL and data C pDS and f > pPrice then
Create a record entry R[idx] with index ¢dz for this new data transaction ;
Rlidz].{data, DC,reqTime} + {data, sender, sys.time} ;
R[idz].status <— WAIT-COMPUTATION ;

else
L Return $ f to sender and terminate ;

Function ComputationComplete(idx, K esuit Hash) // Callable by DC
Rlidz]).krHash < K,csuit Hash
R[idz].status < WAIT_-COMPLETE ;

Function CompleteTransaction(idx, Kycsyit) // Callable by DO
if Hash(K,csu1t) = R[idz].kr Hash then
Send $f to DO ;
Rlidz].kr < Kresuit
R[idx].status <— COMPLETE // Data transaction complete;
Function Cancel(idx) // Callable by DC
if sender = R[idx].DC and (sys.time — R[idx].reqTime) > pRT O then
Return $ f to R[idz].DC} ;
R[idx].status = CANCELED ;
Function Revoke() // Callable by DO
if sender = DO then
L contract selfdestruct ;

Data Owner’s Smart Contract Cpo We design Cpo to capture the functional-
ities discussed above. The pseudo code of Cpo in shown in Algorithm 1. In addition
to the policy variables, Cpo encodes functions for enforcing the control logic. Con-
structor initializes the policy at contract creation. Request takes a payment deposit from
DC along with the requested operation op, the requested data descriptor D;qrget, and
authorizes this data transaction. ComputationComplete is called by DC to signal the
completion of the off-chain data execution. CompleteTransaction is called by DO to
record the data usage and completes the transaction. The deposited payment is then
redistributed to DO. We will cover more details on them along with the result commit-
ment process in Section 5. Cancel is called by DC to abort the current transaction if the
timeout passes. Lastly, Revoke invalidates the contract and can be called only by DO.



PrivacyGuard: Enforcing Private Data Usage Control 9

4.2 Using Data Broker to Address the On-Chain Scalability Challenge

While Cpo allows individual DOs to have fine-grained control over data usage pol-
icy and participate in data market independently, this paradigm puts heavy pressure
on the blockchain transaction processing capability when the number of DOs is huge.
In the meantime limited transaction throughput is a known problem for major public
blockchains [7,12,20]. While there are many ongoing efforts to scale up transaction
throughput [36,1], we take a different but complementary approach to address this is-
sue in PrivacyGuard’s scenario. A trusted delegate, namely data broker (DB), is used to
represent a group of users and curates a DB’s contract (Cpg). Cpp allows individual
DOs to register data entries and operations for DB to moderate. DB then participates in
the data market on behalf of the registered DOs. We call this paradigm the DB-based
system in our later implementation, in contrast to the iDA-based system.

The pseudo code of Cpp is provided in Appendix A. Cpg emulates Cpo for
most parts but with extra global variables for data source management and two more
functions: Register and Confirm. When a DO wants to make use of the DB, she first
invokes Register function to register her data with the Cpp. In the data plane, the DO
needs to remotely attest the DB to establish trust, then provisions the data keys to the
DB enclave. This, however, is not the end of data registration, because the data source
and quality still need to be verified by the DB. Once verified, DB invokes Confirm func-
tion to complete the data registration. Furthermore, result commitment is also slightly
different for Cpp. The CompleteTransaction function is now callable by DB and needs
to distribute payments to all involved DOs.

5 Off-Chain Contract Execution

PrivacyGuard leverages blockchain smart contract to provide the control mechanisms
for valued data exchanges. While the technology offers a distributed time-stamped
ledger which is ideal in providing a transparent recording of data usage, smart contract
suffers from several prohibiting drawbacks when it comes to confidential data computa-
tion purely on-chain. First, the smart contract invocation and the ensuing computation is
executed and repeated by all nodes in the blockchain network. The cost to run complex
algorithms on-chain can be prohibitive even assuming data storage is not an issue. Sec-
ond, data has to be decrypted and stored on the chain, causing confidentiality problems.

To tackle this problem, we introduce the concept of off-chain contract execution in
PrivacyGuard and introduce an entity called off-chain contract execution environment
(CEE) to bring both the computation and data provisioning off-chain. Particularly, we
decompose a data usage contract into two portions, the control part and the computa-
tion part. The control flow starts with invoking the contract and stops at the contracted
computation task which switched to off-chain. The control flow is resumed with an-
other contract invocation when the off-chain computation task is finished. Accordingly,
we propose a novel off-chain contract execution and result commitment protocol, as is
shown in Fig. 2. Note that both DB and iDA can represent a DO. Here we resort to the
DB-based paradigm for convenience of presentation. We defer the discussion on DB’s
role in the data plane to the end of this section. Next we elaborate on the important
features of off-chain contract execution in a constructive manner.



10 Y. Xiao et al.
Data Usage Contract

Request(data,operation) and

CompleteTransaction(Kyesyit) Request( ) pay deposit

d@ ComputationComplete( )
P CompleteTransaction( )

DB ©) DC
(or DO) ComputationComplete(Hash (K, ¢, )) ‘.‘
(==<°)
DB . —— DC
Server ® Reg)o;e a;t;statlo_n ttested Instruct to initiate enclave » Server
(or iDA) Sao e:ecurdeat;lann:eles e and remote attestation @) //'

~o -

~

~o -
Send Kyesurr (8 "~ L
in attested secure channel ~~_ -7 @

N -
Seao //' send Cresue = Ency,, . (result),
= N -~ Hash(C,suic), and Hash(Kpesuir)
e TR R R » in attested secure channel

=] @ Fetch Cyata
Cloud Storage (6) Data Computation

Fig. 2. Oft-chain Contract Execution and Result Commitment

5.1 Establishing Trust on the Execution of Contracted Operation through
“Local Consensus”

The first challenge is the correct execution of the contracted task. As we have men-
tioned, when smart contracts are executed on blockchain platform, the correctness of
the execution is guaranteed by the entire network through global consensus, which suf-
fers from high on-chain cost. Our observation is that the correctness of one particular
computation instance only matters to the stakeholders of the data transaction, i.e. the
DOs, DB, and DC. And we do not need the entire network to verify the correctness.

In the conventional setting of distributed computing, both the DC and DO would
perform the data computation task and expect the same result from each other. However,
it contradicts DO’s goal of fine-grained control on data usage if the data are directly pro-
vided to DC. Instead, we rely on software remote attestation, which is a widely avail-
able primitive with TEEs [30,2], for securely delegating the computation task to CEE.
In this paper we opt for Intel SGX [30]. First of all, the designated computation program
should pre-ratified with its program (binary) hash published in the data contract along
side “authorized operations”. When instructed by DC for a specific computation task,
CEE loads the corresponding enclave program for that task. Then the two transacting
sides in the data plane, DB and DC, remotely attest the enclave program to verify its
authenticity and integrity with the program hash in the contract. As a result, as shown in
Fig. 2, the immediate steps after data transaction request is to have CEE load the enclave
program and DC and DB remotely attest the CEE enclave. Once correctly CEE enclave
is verified with attestation reports, both sides of the contract can then extend their trust
to CEE, knowing the attested program will execute securely in the enclave till termi-
nation, and the computation result will be genuine even if an adversary compromises
CEE’s untrusted platform (i.e., “normal world” in TEE terminology, which includes the
operating system and non-enclave programs). And finally the result produced by CEE
will be the “local consensus” between the two sides.



PrivacyGuard: Enforcing Private Data Usage Control 11

5.2 Enforcing Data Obligation and Confidentiality

The local consensus mechanism guarantees the data intensive computation task can be
offloaded to the off-chain entity CEE for execution while maintaining the correctness
of computation. However, in order to achieve the privacy goals of PrivacyGuard, com-
putation itself has to fulfill the data obligation, which we refer to as the obligations
of DC for utilizing DO’s data. More specifically, it follows the general requirement of
secure computation, wherein only the computation result is accessible by the DC, not
the plaintext source data. First, the computation process should not output any plaintext
source data or any intermediate results that are derived from the source data. Second, at
the end of the computation, all decrypted data and intermediate results should be sani-
tized. Despite recent breakthrough in fully homomorphic encryption, performing arbi-
trary computation over encrypted data remains impractical for generic computation. In
PrivacyGuard, we make use of TEE enclaves to create the environment for confidential
computing. As is illustrated by step 3 and 4 in Fig. 2, DO’s data en/decryption key K j4tq
can be provisioned to CEE’s enclave only if the latter can be cryptographically verified
via remote attestation and a secure channel is established. This comes as an integral
part of the local consensus. The hardware of CEE, the processor specifically, enforces
the isolation between the untrusted platform and the enclave. We require the enclave
program to include steps to sanitize intermediate results and keying materials. Since
memory contents are encrypted in Intel SGX, once the keying material is removed, the
data can be considered effectively sanitized. This also ensures that the program inside
the enclave will terminate once the contracted task is completed.

5.3 Ensuring Atomicity in Contract Execution and Result Commitment

The last challenge is ensuring the atomicity of the contract, which arises from the split
of control between on-chain off-chain. Contract functions that were previously executed
in a single block are now completed via multiple function invocations that are executed
in multiple blocks. Furthermore, there is no guarantee on the execution time of the
off-chain computation, because an adversary controlling the platform can interrupt the
computation and cause delays. Specifically, two issues need to be addressed.

The first issue is the contract function runtime. When the adversary has control of
the off-chain computation platform of CEE, he can pause or delay the computation. For
many data computations, the result can be time-sensitive. To tackle this problem, we
add a timeout mechanism in the data contract to allow DC to cancel the request after
timeout and have the deposit refunded (see Algorithm 1).

The second issue is the atomic completion of the contract. We want both the DOs
to get the payment in the control plane while allowing DC to get the computation re-
sults in the data plane. This is particularly challenging due to the lack of availability
guarantee on the CEE platform. When the platform is compromised, the adversary can
intercept and modify any external I/O from the enclave, including both the network and
storage. Our design for the atomic completion and result commitment can be observed
from step 7 to 10 in Fig. 2. The key idea is that result release and contract completion
should be done as a single message in the control plane. To prevent DC from getting
the result without completing the payment to DOs, the result are encrypted into Cre syt



12 Y. Xiao et al.

with a random result key K,.s,i¢, before being sent to DC in the attested secure chan-
nel. Since the platform can corrupt any output from CEE, the CEE enclave also sends
DC the hash of the encrypted result and key, i.e., Hash(C}.csui¢) and Hash (K cguit ),
which will be later used by DC for integrity check on the result and the key. K¢y 1S
passed to DB in the attested secure channel. To prevent DB from completing the trans-
action without releasing the correct result key, DC needs to initiate the commitment
procedure in the control plane by invoking the contract function ComputationComplete
with Hash(Kcs.¢), indicating it has the encrypted result and is ready to finish the
data transaction if and only if the correct result key K5, is released. Upon observing
the message from DC, DB then invokes the smart contract function CompleteTransac-
tion with the result key K.csy1:. Only when the hash of K., matches the previously
received Hash (K ¢sy¢ ), will the contract write the data usage into records, release the
payment to DOs, and finally conclude the data transaction. Note that our commitment
protocol design does not need to protect the confidentiality of K,..s,;; (thus enabling
the on-chain hash check). This is because the encrypted result C,.csq: is passed di-
rectly from CEE enclave to DC via the attested secure channel. Finally, DC has the full
discretion in deciding whether to publish the computation result afterwards.

5.4 Data Broker for Scalability in the Data Plane

In the iDA-based paradigm, when DC needs to use the data from a large number of DOs,
the naive use of remote attestation on the CEE would require each iDA to individually
attest and verify the CEE enclave, resulting in linearly growing computation overhead
and network traffic. To address this challenge, in the DB-based paradigm, DB can be
re-purposed as a trusted intermediary between the CEE and all relevant DOs in the
data plane during the preparation stage, similar to its control plane role. Essentially,
DB is also deployed on a TEE-enabled machine and instantiates an enclave for secure
handling of DOs’ data. The enclave is attested to every new DO only once after the
DO registers with DB. During the normal operation, DB attests CEE on behalf of all
relevant DOs for each DC request, saving the need for individual DOs to attest CEE.
To accommodate the extreme case when a large number of DOs registers with DB
simultaneously, we will explore parallel remote attestation solutions in Subsection 6.1.

6 Implementation and Evaluation

We implemented a prototype of PrivacyGuard using Intel SGX as the TEE technol-
ogy and Ethereum as the smart contract platform. Source code with documentation is
available at https://github.com/yang-sec/PrivacyGuard. The on-chain
components, namely the DO contract and the DB contract, were implemented in So-
lidity with 144 and 162 software lines of code (SLOC) respectively. The data usage
price was set at 0.01 ethers per user data. The off-chain components include five Pri-
vacyGuard applications, namely iDataAgent (iDA), Data Broker (DB), Data Owner
(DO), Data Consumer (DC), Contract Execution Environment (CEE). They were im-
plemented in C++ with Intel SGX SDK v2.3.1 on top of Ubuntu 16.04 LTS. The total
SLOC for off-chain components is about 37,000.


https://github.com/yang-sec/PrivacyGuard

PrivacyGuard: Enforcing Private Data Usage Control 13

We deployed the contracts onto Ethereum Rinkeby testnet for evaluation, though
our system is fully compatible with Ethereum mainnet. We used a fixed gas price of
10~ ethers. PrivacyGuard applications were deployed in a LAN scenario. 1 DB, 1
iDataAgent, and 1 CEE ran on a SGX-enabled Linux machine with Intel Core i5-7260U
CPU (2 cores 4 threads, 3.5 GHz). Up to 160 DOs and 1 DC ran on a Linux machine
with AMD FX-8320 CPU (4 cores 8 threads, 3.5 GHz). We note that this setup aims for
feasibility demonstration; in real-world deployment each application will most likely
reside in a different machine. We used the adult dataset from UCI Machine Learning
Repository [15] to simulate the data source. Each DO randomly drew 500 data points
from the dataset as its private data. We have tested the entire PrivacyGuard workflow in
multiple runs and the data usage history has been recorded in the deployed contracts.
Our evaluation focuses on the system’s scalability and consists of three parts: control
plane runtimes, control plane costs, and data plane runtimes.

6.1 Control Plane Runtimes

To accommodate the scenario where N DOs simultaneously attest the DB enclave in
the DB-based system, we experimented with a parallel attestation scheme in DB that
each of the N attestation instances is handled by one of the " software threads, which
invokes a new attestation context of the enclave and a dedicated enclave thread control
structure (TCS) (thus TCSNUM = T'). The experiment was repeated under different 7'.
To avoid congesting the Intel Attestation Service (IAS) which may violate the terms of
service, we instead used a simulated IAS that responds to EPID signature revocation
list request and attestation report request with 0.1s and 0.5s delays respectively. The
result is shown in Fig. 3(a). We observe that the parallel scheme is indeed a promising
solution for scaling up attestation capacity, at the cost of enlarged enclave memory
footprint. When N = 160, it takes the 64-thread DB about a tenth the attestation time
of its sequential counterpart. We remark that efficient and scalable remote attestation is
an interesting standalone topic to explore in future work.

—e— Sequential (30.88MB enclave)
1 — 4 threads (32.51MB enclave)

—=— 16 threads (38.99MB enclave)
g0 | —*— 64 threads (64.95MB enclave)

—- Calling register() of DataOwners' contracts
| —@ Calling register() of the DataBroker contract

5
8

Attestation Time (seconds)
Average Time to Finalize (seconds)

1 16 32 48 64 80 96 112 128 144 160 1 16 32 48 64 80 96 112 128 144 160
N (Number of DataOwners) N (Number of Data Owners)

(a) (b)

Fig. 3. (a) Attestation times of DB when N DOs simultaneously initiate attestation. (b) Average
transaction finalization delay when /N DOs simultaneously call a contract function.



14 Y. Xiao et al.

To further evaluate the performance constraints imposed by the blockchain network,
we measured the average transaction finalization delay in a congested environment. We
set up 160 DOs to simultaneously send out a transaction calling the Register() function
in the DB contract and their own DO contracts. we use receipt as the finalization re-
sponse of the Ethereum transaction that makes the function call. The result is shown in
Fig. 3(b). As more DOs send transactions at the same time, the average time to finalize
a transaction increases dramatically. A straightforward workaround is to require DOs to
call Register() according to a time schedule that minimizes congestion.

6.2 Control Plane Cost

The monetary cost of the control plane mainly comes from the gas cost of operating
smart contracts in Ethereum. At the beginning, every DO registers its data items on its
own DO contract and the DB contract. DB fetches data from whoever registered with
its contract and routinely confirms new registries. DC then requests for the data items
from N DOs by sending a request transaction to the DB contract (or separate requests to
all related DO contracts) with a sufficient deposit to cover the price before proceeding
to attesting CEE. We repeated the experiment for N = 1 — 10 and obtained the gas
costs and dollar equivalents for each contract function call, based on the ether price on
03/31/2019, which was $141.51 (source: https://coinmarketcap.com/).

Table 1. Cost of the data contract’s scale-independent functions

DO Contract DB Contract
Function Gas Cost USD Equiv.|Gas Cost USD Equiv.
constructor() 951747 0.13468 | 846794 0.11983

Register() (new) 156414 0.02213 125392 0.01774
Register() (update)| 30121 0.00426 45177 0.00639
Cancel() 81998 0.01160 66954 0.00947

We find that in both DB and DO contracts the costs of calling constructor() (con-
tract creation), Register() and Cancel() do not depend on the number of registered DOs.
We call these type of function calls scale-independent; otherwise scale-dependent. The
costs of calling scale-independent functions and scale-dependent functions are shown
in Table 1 and Fig. 4(a). Notably, the costs of calling Request() and ComputationCom-
plete() grow faster than the costs of calling Confirm() and CompleteTransaction(). This
implies the total cost will increasingly shift to the DC side, which is a scalable trend for
the system as the DC has incentives to pay for more data usage.

To evaluate the scalability gain brought by DB, we compare the case wherein indi-
vidual DOs share data via their own DO contracts versus via the DB contract. In both
cases, the total amount of data requested by the DC and subsequently operated with by
the CEE are the same. We summed the costs of all function calls except for the con-
tract creation (calling constructor()) and extrapolated over different N. Fig. 4(b) shows
that it costs the DB-based system much less to accommodate one extra DO ($0.0304)


https://coinmarketcap.com/

PrivacyGuard: Enforcing Private Data Usage Control 15

300000 5000000
($0.04245) ($0.70755)
—e— DataBroker-based system
—%— iDataAgent-based system
1$0.20530503080) —~ 4000000 < v
— .2 ($0.56604)
H 3
= 200000 w
g (50.0283) 5 3000000
5 S ($0.42453)
3 150000 a
2 ($0.02123) =
2 S 2000000
o
é 100000 u ($0:28302)
o ($0.01415) (G}
U] —8— DataBroker calling confirm() g 1000000
50000 —¥— DataConsumer calling request() F ($0.14151)
(50.00708) —&— DataConsumer calling computationComplete()
—m- DataBroker calling completeTransaction()
0 0
1 2 3 4 5 6 71 8 9 10 1 2 3 4 5 6 71 8 9 10
N (Number of Data Owners) N (Number of Data Owners)
(a) (b)

Fig.4. (a) Gas costs of the DB contract’s scale-dependent function calls. (b) Total gas costs of
the DB based system and the iDataAgent based system.

compared to the iDataAgent-based system ($0.06096). This result together with con-
trol plane runtimes (Fig. 3(a)) demonstrate DB’s ability to provide PrivacyGuard with
financial and performance scalability when facing a growing number of DOs.

6.3 Data Plane Runtimes

To evaluate CEE’s performance in off-chain contract execution, we experimented with
a demonstrative, reasonably complex computation task: training four parallel instances
of a neural network classifier. Detailed hyperparameters can be found in our source
code. The training functions were ported to the SGX enclave from the Fast Artificial
Neural Network (FANN) Library (https://github.com/libfann/fann). To
evaluate enclave overhead, we also implemented an untrusted version (executed out-
side enclave) of the computation task that ran on the same machine. We noticed that
recent work showed Intel’s Hyperthreading Technology (HTT) has flaws that may im-
pair the security of SGX enclaves [45]. Therefore, we tested the computation task under
different hardware options with respect to the usage of SGX enclave and HTT. The Intel
CPU’s TurboBoost feature was turned off to avoid unexpected performance gain.

1100

1000 ] ~® Inside Enclave. HTT enabled A
—e— Outside Enclave. HTT enabled ‘/'
9001 _4 Inside Enclave. HTT disabled g Al
800 1 -¥- Outside Enclave. HTT disabled ,A’ ,)D,\,?’
- =
700 &b

600
550

400

Runtime (seconds)

—17.99%
d ---¥

300 A
200 4
100

K 2k 3k 4K 5K 6Kk 7K 8K 9K 10K
Number of Training Data Samples

Fig. 5. Runtimes of training an example neural network classifier under four hardware options.


https://github.com/libfann/fann

16 Y. Xiao et al.

The experiment results is shown in Fig. 5. We find that the overhead caused by
disabling HTT is 48.84% for inside enclave and 17.99% for outside-enclave. This in-
dicates disabling HTT will drag down in-enclave performance more significantly. The
overheads caused by enclave are 196.55% and 274.13% for HTT-enabled and HTT-
disabled respectively. We speculate that the big enclave overhead is related to the en-
clave’s secure function calls and our imperfect porting of the training program. We leave
the performance caveats of Intel SGX and possible solutions to future work.

7 Related Work

Privacy Protection Privacy-preserving computation has been an active area of research
in the past decade [25,37,34,8,47,55]. With the increasing reliance on rich data, there
has been a significant amount of research on applying cryptographic techniques to
perform privacy preserving computation and data access control [35,5,8,47,48,3]. Re-
cently, hardware-assisted TEE has been adapted in numerous works to achieve privacy-
preserving computation [34,25,37,59,24,22]. Specially, Ryoan [25] is closely related to
PrivacyGuard. It combines native client sandbox and Intel SGX to confine data pro-
cessing module and provide confidentiality. However, Ryoan aims to achieve data con-
finement with a user-defined directed acyclic graph that specifies information flow. In
comparison, PrivacyGuard allows data user and consumer to negotiate data usage using
smart contract with non-repudiable usage recording.

Blockchain and TEE The idea of moving computation off-chain to improve the per-
formance and security is mentioned in [10,6,9,26,39,51]. Choudhuri et al. [10] com-
bines blockchain with TEE to build one-time programs that resemble to smart contracts
but only aim for a restricted functionality. Ekiden [9] and the Intel Private Data Object
(PDO) project [6] are two concurrently developed projects that are closely related to our
work. Similar to PrivacyGuard, Ekiden harmonizes trusted computing and distributed
ledger to enable confidential contract execution. Ekiden offloads computation from con-
sensus nodes to a collection computing nodes in the aim of improving the ecosystem.
In comparison, PrivacyGuard is designed to fit existing blockchain infrastructure. The
Intel PDO project aims to combine Intel SGX and distributed ledger to allow distrust-
ful parties to work on the data in a confidential manner. However, the system focuses
heavily on a permissioned model with significant overhead for bootstrapping trust.

8 Conclusion

In this paper, we proposed PrivacyGuard, a platform that combines blockchain smart
contract and TEE to enable transparent enforcement of private data computation and
fine-grained usage control. Blockchain can not only be used as a tamper-proof dis-
tributed ledger that records data usage, but also facilitate financial transactions to in-
centivize data sharing. To enable complex and confidential operations on private data,
PrivacyGuard splits smart contract functionalities into control operations and data op-
erations. Remote attestation and TEE are used to achieve local consensus of the con-
tract participants on the trustworthiness of the off-chain contract execution environment.
Atomicity of the contract completion and result release is facilitated by a commitment



PrivacyGuard: Enforcing Private Data Usage Control 17

protocol. We implemented a prototype of PrivacyGuard platform and evaluated it in a
simulated data market. The results show the reasonable control plane costs and feasibil-
ity of executing complex data operations in a confidential manner using the platform.

ACKNOWLEDGMENT

This work was supported in part by US National Science Foundation under grants CNS-
1916902 and CNS-1916926.

A Data Broker Contract Cpg

Algorithm 2: Data Broker’s Smart Contract Cppg Pseudocode

Function Constructor() // Contract creation by DB with config
Parse con fig as (operationList, requestTimeout) ;
cOPL < config.operationList ;
cRTO < config.requestTimeout ;
{DO,DS, R} «+ {[[]],[],[]} // DOs, data sources, data usage records;
DB <« creator ;

Function Register(op, DC, price) // Callable by a DO
Create a DO entry DO[ido, op] with index ido for this new DO;
DOlido, op].{DO, DC, price} < {sender, DC, price} ;

Function Confirm(cfDOs) // Callable by DB

for all {ido, op} that ido € cfDOs and op € cOPL and DO|ido, op] # null do

Append ido to DS[op].DOList ;

Append DOJido, op].DC to DS[op].DC List ;

DS|op].price < DS|op].price + DO[ido, op).price ;

Function Request(op, targetDOs,$f) // Callable by DC

if op € cOPL and sender € DS[op].DC List and target DOs C DS[op].DO List and

f > DS[op].price then
Create a record entry R[¢dx] with index ¢dx for this new data transaction ;
R[idz].{targetDOs, DC,reqTime} < {targetDOs, sender, sys.time} ;
R[idx].status <— WAIT_.COMPUTATION ;

else

L Return $f to sender and terminate ;
Function ComputationComplete(idx, K¢ suit Hash)
| (same as in Cpo, see Algorithm 1)

Function CompleteTransaction(idx, K,csy1t) // Callable by DB
if Hash(K rcsu1t) = Rlidz].kr Hash then
for all ido € DS[R[idx].op].DO List do
| Send $DO[ido, R[idz].op].price to DO[ido]. DO;
Rlidz).kr < Kresuit ;
R[idx].status < COMPLETE // Data transaction complete;

Function Cancel(idx)
| (sameasin Cpo)

Function Revoke()
| (same as in Cpo, except callable by DB)

References

1. brainbot technologies AG: Raiden network. https://https://raiden.network/


https://https://raiden.network/

18

10.

11.

12.

16.

17.

18.

19.

20.

21.

22.

Y. Xiao et al.

. ARM: Security technology building a secure system using trustzone technology (2009)
. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M., Samarati,

P.: Mix&slice: Efficient access revocation in the cloud. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. pp. 217-228 (2016)

. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007

IEEE symposium on security and privacy (SP’07). pp. 321-334. IEEE (2007)

. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: The-

ory of Cryptography Conference. pp. 253-273. Springer (2011)

. Bowman, M., Miele, A., Steiner, M., Vavala, B.: Private data objects: an overview (2018),

https://arxiv.org/pdf/1807.05686.pdf

. Buterin, V.: Privacy on blockchain. https://blog.ethereum.org/2016/01/15/

privacy-on-the-blockchain/

. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked

search over encrypted cloud data. IEEE Transactions on parallel and distributed systems
25(1), 222-233 (2014)

. Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels, A., Miller, A., Song,

D.: Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart
contracts. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P). pp.
185-200. IEEE (2019)

Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, L.: Fairness in an unfair world:
Fair multiparty computation from public bulletin boards. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 719-728. ACM (2017)
Costan, V., Lebedev, L.A., Devadas, S.: Sanctum: Minimal hardware extensions for strong
software isolation. In: USENIX Security Symposium. pp. 857-874 (2016)

Croman, K., Decker, C., Eyal, 1., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P.,
Shi, E., Sirer, E.G., et al.: On scaling decentralized blockchains. In: International Conference
on Financial Cryptography and Data Security. pp. 106—125. Springer (2016)

. Custers, B., Ursi¢, H.: Big data and data reuse: a taxonomy of data reuse for balancing big

data benefits and personal data protection. International Data Privacy Law 6(1), 4-15 (2016)

. Datta, A., Fredrikson, M., Ko, G., Mardziel, P., Sen, S.: Use privacy in data-driven systems:

Theory and experiments with machine learnt programs. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1193-1210. ACM
(2017)

. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017), http://

archive.ics.uci.edu/ml

Dwork, C.: Differential privacy: A survey of results. In: International conference on theory
and applications of models of computation. pp. 1-19. Springer (2008)

Elnikety, E., Mehta, A., Vahldiek-Oberwagner, A., Garg, D., Druschel, P.: Thoth: Compre-
hensive policy compliance in data retrieval systems. In: USENIX Security Symposium. pp.
637-654 (2016)

Ethereum: Blockchain app platform. https://www.ethereum.org/

General data protection regulation (GDPR) (2016), https://eur-lex.europa.eu/
eli/reg/2016/679/07

Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: A scalable blockchain pro-
tocol. In: NSDI. pp. 45-59 (2016)

Facebookcambridge analytica data scandal. https://en.wikipedia.org/wiki/
Facebook%E2%80%93Cambridge_Analytica_data_scandal

Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryption using
intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 765-782. ACM (2017)


https://arxiv.org/pdf/1807.05686.pdf
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.ethereum.org/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

PrivacyGuard: Enforcing Private Data Usage Control 19

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Proceedings of the 13th ACM conference on Computer
and communications security. pp. 89-98 (2006)

Hunt, T., Song, C., Shokri, R., Shmatikov, V., Witchel, E.: Chiron: Privacy-preserving ma-
chine learning as a service (2018), https://arxiv.org/pdf/1803.05961.pdf
Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: A distributed sandbox for untrusted
computation on secret data. In: OSDI. pp. 533-549 (2016)

Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.-W.: Arbitrum: Scalable,
private smart contracts. In: Proceedings of the 27th USENIX Conference on Security Sym-
posium. pp. 1353—-1370. USENIX Association (2018)

Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In: Security and Privacy (SP), 2016
IEEE Symposium on. pp. 839-858. IEEE (2016)

Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and I-
diversity. In: 2007 IEEE 23rd International Conference on Data Engineering. pp. 106-115.
IEEE (2007)

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: I-diversity: Privacy
beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1),
3—es (2007)

McKeen, F., Alexandrovich, 1., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue, V.,
Savagaonkar, U.R.: Innovative instructions and software model for isolated execution. In:
HASP@ ISCA. p. 10 (2013)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

National Science and Technology Council: National privacy research strategy, https://
www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
Nissenbaum, H.: Privacy as contextual integrity. Washington Law Review 79, 119 (2004)
Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K., Costa, M.:
Oblivious multi-party machine learning on trusted processors. In: USENIX Security Sym-
posium. pp. 619-636 (2016)

Pass, R., Shi, E., Tramer, F.: Formal abstractions for attested execution secure processors.
In: Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 260-289. Springer (2017)

Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments
(2016), https://www.bitcoinlightning.com/wp—-content/uploads/
2018/03/1ightning-network-paper.pdf

Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz, G., Russi-
novich, M.: Vc3: Trustworthy data analytics in the cloud using sgx. In: Security and Privacy
(SP), 2015 IEEE Symposium on. pp. 38-54. IEEE (2015)

Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M.: Bootstrapping privacy
compliance in big data systems. In: Security and Privacy (SP), 2014 IEEE Symposium on.
pp. 327-342. IEEE (2014)

Sinha, R., Gaddam, S., Kumaresan, R.: Luciditee: Policy-compliant fair computing at scale
(2019), https://eprint.iacr.org/2019/178.pdf

Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P., Franz, M.: Sok: sani-
tizing for security. In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 1275-1295.
IEEE (2019)

Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 10(05), 557-570 (2002)

Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9)
(1997)


https://arxiv.org/pdf/1803.05961.pdf
https://www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
https://www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://eprint.iacr.org/2019/178.pdf

20

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Y. Xiao et al.

TED Talk: How tech companies deceive you into giving up your data and privacy. https:
//goo.gl/hsSfaUx

Tim cook: Personal data collection is being ‘weaponized against us with military efficiency’.
https://goo.gl/BsWB3k

Van Bulck, J., Piessens, F., Strackx, R.: Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient out-of-order execution. In: 27th USENIX Security Symposium
(USENIX Security 18) (2018)

Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your se-
crets without page faults: Stealthy page table-based attacks on enclaved execution. In: 26th
USENIX Security Symposium (USENIX Security 17). pp. 1041-1056 (2017)

Verykios, V.S., Bertino, E., Fovino, LN., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-
of-the-art in privacy preserving data mining. ACM Sigmod Record 33(1), 50-57 (2004)
Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption policies
for regulating access to outsourced data. ACM Transactions on Database Systems (TODS)
35(2), 12 (2010)

Wang, G., Liu, Q., Wu, J.: Hierarchical attribute-based encryption for fine-grained access
control in cloud storage services. In: Proceedings of the 17th ACM conference on Computer
and communications security. pp. 735-737 (2010)

Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang, H., Gunter,
C.A.: Leaky cauldron on the dark land: Understanding memory side-channel hazards in sgx.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2421-2434. ACM (2017)

Wiist, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: Ace: Asynchronous and con-
current execution of complex smart contracts. (2019), https://eprint.iacr.org/
2019/835.pdf

Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In: 2015 IEEE Symposium on Security and Privacy. pp. 640—
656. IEEE (2015)

Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: Infocom, 2010 proceedings IEEE. pp. 1-9. Ieee (2010)
Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: An authenticated data
feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 270-282. ACM (2016)

Zhang, N., Li, J., Lou, W., Hou, Y.T.: Privacyguard: Enforcing private data usage with
blockchain and attested execution. In: Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pp. 345-353. Springer (2018)

Zhang, N., Sun, H., Sun, K., Lou, W,, Hou, Y.T.: Cachekit: Evading memory introspection
using cache incoherence. In: 2016 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 337-352. IEEE (2016)

Zhang, N., Sun, K., Lou, W., Hou, Y.T.: Case: Cache-assisted secure execution on arm pro-
cessors. In: 2016 IEEE Symposium on Security and Privacy (SP). pp. 72-90. IEEE (2016)
Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: Trusense: Information leakage from
trustzone. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications. pp.
1097-1105. IEEE (2018)

Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.: Opaque: An
oblivious and encrypted distributed analytics platform. In: 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). pp. 283-298. USENIX Associ-
ation, Boston, MA (2017)

Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation platform with
guaranteed privacy (2015), https://arxiv.org/pdf/1506.03471.pdEf


https://goo.gl/hSfaUX
https://goo.gl/hSfaUX
https://goo.gl/BsWB3k
https://eprint.iacr.org/2019/835.pdf
https://eprint.iacr.org/2019/835.pdf
https://arxiv.org/pdf/1506.03471.pdf

PrivacyGuard: Enforcing Private Data Usage Control 21

61. Zyskind, G., Nathan, O., Pentland, A.S.: Decentralizing privacy: Using blockchain to protect
personal data. In: Security and Privacy Workshops (SPW). IEEE (2015)



	PrivacyGuard: Enforcing Private Data Usage Control with Blockchain and Attested Off-chain Contract Execution

