Skip to main content

Intelligent Dynamic Spectrum Access for Uplink Underlay Cognitive Radio Networks Based on Q-Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12384))

Abstract

In this paper, the dynamic spectrum access (DSA) technique for an uplink underlay cognitive radio (CR) network is considered. The objective of the DSA scheme is to allow the secondary users (SUs) access the network on the premise of ensuring the quality of service of the primary user (PU). This DSA process is formulated as an optimization problem to maximize the sum rate of the SUs subject to the constraints of signal-to-interference-and-noise ratio (SINR) of both the PU and SUs, through adjusting the transmit powers and thus SINR thresholds of the SUs. Under the assumption of discrete feasible set, the formulated DSA problem is nonconvex and thus difficult to solve. We develop an intelligent solving method for this DSA problem based on Q-Learning. Numerical simulations show that the proposed algorithm can efficiently learn a solution that guarantees the link quality of the PU after allowing access of the SUs.

This work was supported in part by the National Key R&D Program of China under Grant 2019YFB2102600, the National Natural Science Foundation of China (NSFC) under Grants 61672321, 61701269, 61832012 and 61771289, the Key Research and Development Program of Shandong Province under Grants 2019JZZY020124 and 2019JZZY010313, and the Natural Science Foundation of Shandong Province under Grant ZR2017BF012.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sun, S., Rappaport, T.S., Shafi, M., Tang, P., Zhang, J., Smith, P.J.: Propagation models and performance evaluation for 5G millimeter-wave bands. IEEE Trans. Veh. Technol. 67(9), 8422–8439 (2018)

    Article  Google Scholar 

  2. Lu, J., Cai, Z., Wang, X., Zhang, L., Li, P., He, Z.: User social activity-based routing for cognitive radio networks. Pers. Ubiquit. Comput. 22(3), 471–487 (2018). https://doi.org/10.1007/s00779-018-1114-9

    Article  Google Scholar 

  3. Wang, W., et al.: Joint precoding optimization for secure SWIPT in UAV-aided NOMA networks. IEEE Trans. Commun. 68, 5028–5040 (2020)

    Article  Google Scholar 

  4. Clancy, C., Hecker, J., Stuntebeck, E., O’Shea, T.: Applications of machine learning to cognitive radio networks. IEEE Wirel. Commun. 14(4), 47–52 (2007)

    Article  Google Scholar 

  5. Cai, Z., Ji, S., He, J., Wei, L., Bourgeois, A.G.: Distributed and asynchronous data collection in cognitive radio networks with fairness consideration. IEEE Trans. Parallel Distrib. Syst. 25(8), 2020–2029 (2014)

    Article  Google Scholar 

  6. Bkassiny, M., Li, Y., Jayaweera, S.K.: A survey on machine-learning techniques in cognitive radios. IEEE Commun. Surv. Tutor. 15(3), 1136–1159 (2012)

    Article  Google Scholar 

  7. Cai, Z., Ji, S., He, J., Bourgeois, A.G.: Optimal distributed data collection for asynchronous cognitive radio networks. In: IEEE International Conference on Distributed Computing Systems (2012)

    Google Scholar 

  8. Cai, Z., Duan, Y., Bourgeois, A.G.: Delay efficient opportunistic routing in asynchronous multi-channel cognitive radio networks. J. Comb. Optim. 29(4), 815–835 (2013). https://doi.org/10.1007/s10878-013-9623-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, X., Sun, M., Li, G.Y., Juang, B.-H.F.: Intelligent wireless communications enabled by cognitive radio and machine learning. China Commun. 15(12), 16–48 (2018)

    Google Scholar 

  10. Aprem, A., Murthy, C.R., Mehta, N.B.: Transmit power control policies for energy harvesting sensors with retransmissions. IEEE J. Sel. Topics Signal Process. 7(5), 895–906 (2013)

    Article  Google Scholar 

  11. Reddy, Y.B., Detecting primary signals for efficient utilization of spectrum using Q-learning. In: Fifth International Conference on Information Technology: New Generations (ITNG 2008), pp. 360–365. IEEE (2008)

    Google Scholar 

  12. Venkatraman, P., Hamdaoui, B., Guizani, M.: Opportunistic bandwidth sharing through reinforcement learning. IEEE Trans. Veh. Technol. 59(6), 3148–3153 (2010)

    Article  Google Scholar 

  13. Galindo-Serrano, A., Giupponi, L.: Distributed Q-learning for aggregated interference control in cognitive radio networks. IEEE Trans. Veh. Technol. 59(4), 1823–1834 (2010)

    Article  Google Scholar 

  14. Mohammadi F.S., Kwasinski, A.: QoE-driven integrated heterogeneous traffic resource allocation based on cooperative learning for 5G cognitive radio networks. In: IEEE 5G World Forum (5GWF), pp. 244–249. IEEE (2018)

    Google Scholar 

  15. Shah-Mohammadi, F., Kwasinski, A.: Deep reinforcement learning approach to QoE-driven resource allocation for spectrum underlay in cognitive radio networks. In: IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2018)

    Google Scholar 

  16. Kwasinski, A., Wang, W., Mohammadi, F.S.: Reinforcement learning for resource allocation in cognitive radio networks. In: Machine Learning for Future Wireless Communications, pp. 27–44 (2020)

    Google Scholar 

  17. Pietrzyk, S., Janssen, G.J.M.: Radio resource allocation for cellular networks based on OFDMA with QoS guarantees. In: IEEE Global Telecommunications Conference GLOBECOM 2004, vol. 4, pp. 2694–2699. IEEE (2004)

    Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  19. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  20. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988)

    Google Scholar 

  21. Mendonca, M.R.F., Bernardino, H.S., Neto, R.F.: Reinforcement learning with optimized reward function for stealth applications. Entertainment Comput. 25, 37–47 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguo Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Dong, A., Yu, J. (2020). Intelligent Dynamic Spectrum Access for Uplink Underlay Cognitive Radio Networks Based on Q-Learning. In: Yu, D., Dressler, F., Yu, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2020. Lecture Notes in Computer Science(), vol 12384. Springer, Cham. https://doi.org/10.1007/978-3-030-59016-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59016-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59015-4

  • Online ISBN: 978-3-030-59016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics