Skip to main content

The Linear Geometry Structure of Label Matrix for Multi-label Learning

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12392))

Included in the following conference series:

  • 961 Accesses

Abstract

Multi-label learning annotates a data point with the relevant labels. Under the low-rank assumption, many approaches embed the label space into the low-dimension space to capture the label correlation. However these approaches usually have weak prediction performance because the low-rank assumption is usually violated in real-world applications. In this paper, we observe the fact that the linear representation of row and column vectors of label matrix does not depend on the rank structure and it can capture the linear geometry structure of label matrix (LGSLM). Inspired by the fact, we propose the LGSLM classifier to improve the prediction performance. More specifically, after rearranging the columns of a label matrix in decreasing order according to the number of positive labels, we capture the linear representation of the row vectors of the compact region in the label matrix. Moreover, we also capture the linear and sparse representation of column vectors using the \(L_1\)-norm. The experimental results for five real-world datasets show the superior performance of our approach compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mulan.sourceforge.net/datasets-mlc.html.

References

  1. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3(Nov), 463–482 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Proceedings of NeurIPS, pp. 730–738 (2015)

    Google Scholar 

  3. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_7

    Chapter  Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Proceedings of ICCV, pp. 2790–2797 (2002)

    Google Scholar 

  5. Gupta, V., Wadbude, R., Natarajan, N., Karnick, H., Jain, P, Rai, P.: Distributional semantics meets multi-label learning. In: Proceedings of AAAI, pp. 3747–3754 (2019)

    Google Scholar 

  6. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  Google Scholar 

  7. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. 3(3), 1–13 (2007)

    Article  Google Scholar 

  8. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recommendation, tagging, ranking and other missing label applications. In: Proceedings of SIGKDD, pp. 935–944 (2016)

    Google Scholar 

  9. Jing, L., Yang, L.: Semi-supervised low-rank mapping learning for multi-label classification. In: Proceedings of CVPR, pp. 1483–1491 (2015)

    Google Scholar 

  10. Li, J., Lu, K., Huang, Z., Shen, H.Y.: Two birds one stone: on both cold-start and long-tail recommendation. In: Proceedings of ACM MM, pp. 898–906 (2017)

    Google Scholar 

  11. Liu, W., Tsang, I.W.: Large margin metric learning for multi-label prediction. In: Proceedings of AAAI (2015)

    Google Scholar 

  12. Shen, X., Liu, W., Tsang, I.W., Sun, Q.S., Ong, Y.S.: Compact multi-label learning. In: Proceedings of AAAI (2018)

    Google Scholar 

  13. Sorower, M.S.: A literature survey on algorithms for multi-label learning. Oregon State University, vol. 18, pp. 1–25 (2010)

    Google Scholar 

  14. Spyromitros, X.E., Papadopoulos, S., Kompatsiaris, I.Y., Tsoumakas, G., Vlahavas, I.: A comprehensive study over VLAD and product quantization in large-scale image retrieval. IEEE Trans. Multimedia 16(6), 1713–1728 (2014)

    Article  Google Scholar 

  15. Tai, F., Lin, H.T.: Multi-label classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012)

    Article  MathSciNet  Google Scholar 

  16. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  17. Xu, C., Tao, D., Xu, C.: Robust extreme multi-label learning. In: Proceedings of SIGKDD, pp. 1275–1284 (2016)

    Google Scholar 

  18. Yu, H.F., Jain, P., Kar, P., S. Dhillon, I.: Large-scale multi-label learning with missing labels. In: Proceedings of ICML, pp. 593–601 (2014)

    Google Scholar 

  19. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  20. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2013)

    Article  Google Scholar 

  21. Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of AISTATS, pp. 873–882 (2011)

    Google Scholar 

  22. Zhang, Y., Schneider, J.: Maximum margin output coding. In: Proceedings of ICML (2012)

    Google Scholar 

  23. Mencia, E.L., Fürnkranz, J.: Efficient pairwise multilabel classification for large-scale problems in the legal domain. In: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 50–65 (2002)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China (No. 2016QY06X1203), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC02040400), the National Natural Science Foundation of China (No. U1836203) and Shandong Provincial Key Research and Development Program (2019JZZY20127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T., Li, F., Zhuang, F., Guo, Y., Fang, L. (2020). The Linear Geometry Structure of Label Matrix for Multi-label Learning. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12392. Springer, Cham. https://doi.org/10.1007/978-3-030-59051-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59051-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59050-5

  • Online ISBN: 978-3-030-59051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics