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Abstract. A dynamic attributed graph is a graph that changes over
time and where each vertex is described using multiple continuous at-
tributes. Such graphs are found in numerous domains, e.g., social net-
work analysis. Several studies have been done on discovering patterns
in dynamic attributed graphs to reveal how attribute(s) change over
time. However, many algorithms restrict all attribute values in a pat-
tern to follow the same trend (e.g. increase) and the set of vertices in
a pattern to be fixed, while others consider that a single vertex may
influence its neighbors. As a result, these algorithms are unable to find
complex patterns that show the influence of multiple vertices on many
other vertices in terms of several attributes and different trends. This
paper addresses this issue by proposing to discover a novel type of pat-
terns called attribute evolution rules (AER). These rules indicate how
changes of attribute values of multiple vertices may influence those of
others with a high confidence. An efficient algorithm named AER-Miner
is proposed to find these rules. Experiments on real data show AER-
Miner is efficient and that AERs can provide interesting insights about
dynamic attributed graphs.

Keywords: Dynamic Graphs · Attributed Graphs · Pattern Mining ·
Attribute Evolution Rules.

1 Introduction

In the last decades, more and more data has been collected and stored in
databases. In that context, graphs are playing an increasingly important role
because they can model complex structures such as chemical molecules, social
networks, computer networks, and links between web pages [16, 6, 5, 11, 7]. To
discover interesting knowledge in graphs, algorithms have been proposed to mine
various types of patterns such as frequent subgraphs, trees, paths, periodic pat-
terns and motifs [10, 16]. However, many studies consider that graphs are static.
However, in real life, graphs often evolve, and studying these changes can provide
crucial information. Graph data can be encoded as dynamic graphs to consider
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temporal information, i.e., graphs observed at different timestamps, where edges,
vertices, and labels may change. Several traditional pattern mining tasks have
been extended to cope with dynamic graphs [3, 8]. However, most algorithms can
only handle graphs where each edge or vertex is described using one label. But
for many applications such as social network mining, it is desirable to describe
graph vertices using multiple attributes (e.g. each person may have attributes
such as age, gender, location and musical tastes).

To address this issue, a generalization of dynamic graphs has been studied,
called dynamic attributed graphs, where vertices are described using multiple
continuous attributes [6, 5]. This representation allows to store rich information
about vertices. Several algorithms have been designed to mine patterns in dy-
namic attributed graphs to reveal interesting attribute changes over time [5–7,
11]. Although those algorithms have several useful applications, patterns have
a simple structure and the algorithms impose many restrictions. For example,
Desmier et al. [6] proposed to discover sets of vertices in a dynamic graph, where
attributes change in the same way over consecutive timestamps. Hence, patterns
involving different types of changes (trends) cannot be found. Cheng et al. [5]
partly solved that problem by proposing to find sequences of vertex sets that
can contain different trends and attributes. However, a pattern is not allowed to
match with more than a vertex set and no measure of confidence is used. Hence,
spurious patterns may be found, containing uncorrelated changes. Algorithms by
Kaytoue et al. [11] and Fournier-Viger et al. [7] find patterns involving various
trends but focus on the influence of single vertices on their neighbors. In other
words, these algorithms cannot find complex patterns that show the influence of
multiple vertices on other vertices.

This paper addresses these issues by proposing to discover a novel type of
patterns called Attribute Evolution Rsules (AER). which indicate how changes
of attribute values of multiple vertices may influence those of others with a high
confidence. The contributions of this study are as follows. The problem of mining
the novel pattern type of AERs is defined and its properties are studied. The al-
gorithm relies on frequency and confidence measures inspired by association rule
mining [1] to ensure that changes in patterns have a strong correlation. AERs are
easy to interpret. They indicate likely attribute changes for a subgraph following
some attribute changes. Such rule can be useful to predict the future status of a
subgraph or to compress a subgraph. An efficient algorithm named AER-miner
is proposed to extract these pattern from a dynamic attributed graph. An ex-
perimental evaluation was done on two real datasets (airport flight and research
collaboration graphs), which shows that the algorithm is efficient and that in-
sightful patterns are found that could not be revealed by previous algorithms.
Moreover, two synthetic datasets are generated for experiments.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 introduces preliminaries and defines the proposed problem of mining
attribute evolution rules. Then, Section 4 describes the designed AER-Miner
algorithm, Section 5 presents the experimental evaluation, and Section 6 draws
a conclusion and discusses future work.
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2 Related work

Recently, a large and growing body of work aimed at mining patterns in dynamic
attributed graphs, where vertices are annotated with one or more continuous at-
tributes. The first work in this direction was done by Jin et al [10]. They proposed
an algorithm, which first transforms a dynamic attributed graph into a trend
graph. A trend graph is a representation of a dynamic attributed graph where
attribute values are replaced by trends indicating whether an attribute value has
increased, decreased or stayed the same for two consecutive timestamps. Then,
the algorithm mines a type of patterns called trend motif from the trend graph,
which is a connected subgraph where all vertices display the same attribute
change (e.g. an increase). An important limitation of that algorithm is that it
can only process graphs having a single attribute (called a weighted dynamic
graph), and all vertices of a pattern must follow the same trend.

Then, several studies proposed to mine other types of patterns in dynamic
attributed graphs using the trend graph representation. To consider multiple
attributes, Desmier et al [6] proposed to mine cohesive co-evolution patterns in
dynamic attributed graphs. A cohesive co-evolution pattern is a set of vertices
that show a same trend during a time interval for one or more attributes, and
appear frequently over time. Limitations of this work are that vertices may not
be connected and these patterns do not allow to see how a change may influence
another change since patterns describe a single time interval.

To study how some changes may influence the structure of a graph, Kaytoue
et al [11] proposed to mine triggering patterns. A triggering pattern is a rule of
the form L → R, where L is a sequence of attribute variations followed by a
single topological change, R. An important limitation of this work is that each
pattern consider changes for a single node. Thus, these patterns cannot explain
how the attributes of one or more nodes may influence each other. Moreover, a
strong restriction is that all rules have a fixed consequent.

Then, Cheng et al. [5] addressed some of these limitations with a novel pattern
type named recurrent patterns. A recurrent pattern indicates how attribute val-
ues have evolved for a set of vertices over more than one time interval. However,
a major limitation of this study is that the set of vertices is fixed for a pattern.
Thus, this approach does not allow finding general patterns occurring for sev-
eral sets of vertices having the same topological structure. Moreover, there is no
measure of confidence that a change will likely be followed by another change.
Hence, spurious patterns may be found containing changes that are uncorrelated
to the following changes.

Recently, Fournier-Viger et al [7] addressed this latter issue by proposing a
pattern named significant trend sequence indicating a strong correlation between
some attribute changes. But this study only considers the very specific case where
a node’s attributes influence its neighbors’ attributes. Thus, it ignores the case
where multiple nodes may influence other node’s attributes.

In summary, most of the above studies have one or more of the following
important limitations: to consider a single attribute [10], to consider a single
time interval [10, 6], to mine a set of vertices that may not be connected [6, 5], to
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consider that all vertices must follow the same trend(s) [10, 6], to consider only
the influence of a single node on its neighbors [7], and to not assess whether a
change is correlated with a following change [5].

This paper address these issues by proposing a new type of patterns named
attribute evolution rules. It is a type of rules of the form A → C where the
antecedent and consequent describe how some attributes have changed for a
connected subgraph at two consecutive time intervals. This type of rules is de-
signed to reveal the influence of attribute changes from multiple nodes on those
of multiple other nodes, a type of relationship that could not be revealed by
prior work. To ensure that strong rules are found, a confidence measure and a
lift measure are used inspired by studies on association rule mining [1].

The work that is the closest to the current work is that of Berlingerio et al [2],
which developed an algorithm to mine rules called graph evolution rules (GER)
in dynamic graphs. A GER indicates that a subgraph having a given topological
structure may evolve into another structure thereafter. Another similar concept
is that of link formation rules (LFR) [13], proposed to study the conditions that
result in edges addition in a dynamic graph. A related study also proposed to
find correlation and contrast link formation rules [14]. However, a limitation of
these studies is that they only handle simple dynamic graphs for the case of edge
addition, and do not consider edge or node deletion and relabeling. To address
this problem, Scharwachter et al [15] designed an algorithm named EvoMiner
to mine rules with both topology and label evolution. But most work on rule
mining in dynamic graphs only consider topological evolution rather than label
evolution, and are restricted to dynamic graphs containing one attribute. This
is unsuitable for real-life applications where graphs have many attributes and
studying how they influence each other may reveal useful information.

3 Preliminaries and Problem definition

This section first introduces preliminaries related to dynamic attributed graphs
and then defines the proposed problem.

Definition 1 (Graph). A graph is a tuple G = (V,E) where V is a vertex set,
and E ⊆ V × V is an edge set.

Definition 2 (Dynamic attributed graph). A dynamic attributed graph
is a sequence of attributed graphs G = 〈Gt1, Gt2, . . . , Gtmax

〉 observed at some
timestamps t1, t2, . . . tmax. An attribute graph Gt is a tuple Gt = (Vt,At, Et, λt),
where Vt is a set of vertices, At is a set of attributes, Et ⊆ Vt × Vt is a set of
edges, and λt : Vt × At → R is a function that associates a real value to each
vertex-attribute pair, for the timestamp t.

For instance, Fig. 1 A) shows a dynamic attributed graph observed at times-
tamps t1, t2 . . . t4, containing two vertices denoted as 1 and 2, connected by a
single edge, and where vertices are described using three numerical attributes a,
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Fig. 1. A) a dynamic attributed graph, B) a trend graph

b and c. It is to be noted that the topological structure is not required to stay
the same for different timestamps.

To analyze how attribute values change over time in a dynamic attributed
graph, a popular approach is to convert it into a trend graph [5–7, 10]. This
transformation consists of calculating trends for each time interval (two consec-
utive timestamps). A trend indicates whether an attribute value has increased,
decreased or stayed the same {+,−,=} during a time interval.

Definition 3 (Trend graph). Let there be a dynamic attributed graph G =
〈Gt1, Gt2, . . . , Gtmax〉 observed at some timestamps t1, t2, . . . tmax. Let there be
a set of trends Ω which are set of discrete value indicating attributes status.
The trend graph corresponding to G is a dynamic attributed graph G′ = 〈G′1, G′2,
. . . , G′max−1〉, where G′k = (V ′k,A′k, E′k, λ′k) for 1 ≤ k ≤ max−1 is an attributed
graph where λ′k : V ′k × A′k → Ω is a function that associates a symbol to each
vertex-attribute pair and such that (1) V ′k = Vk, (2) E′k = Ek, (3) A′k = Ak,
(4) ∃(v, a,+) ∈ λ′k iff λk+1(v, a)− λk(v, a) > 0, ∃(v, a,−) ∈ λ′k iff λk+1(v, a)−
λk(v, a) < 0, and ∃(v, a,=) ∈ λ′k iff λk+1(v, a) = λk(v, a). In other words, the
k-th graph G′k of a trend graph indicates how attribute values have changed in
the time interval from timestamp k to k + 1.

For instance, Fig. 1 B) shows the trend graph corresponding to the dynamic
attributed graph of Fig. 1 A). The trend graph has three time intervals ti1, ti2
and ti3, representing timestamps t1 to t2, t2 to t3, and t3 to t4, respectively. At
ti1, the attribute a of vertex 2 has a − value because its value decreased from
timestamps t1 to t2.

In this project, Ω = {+,−,=} indicating that an attribute value has in-
creased, decreased or stayed the same. But without loss of generality, continuous
attributes could be mapped to more than three symbols such as ++,+,=,−,−−
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to distinguish between small changes and larger ones. Moreover, to avoid detect-
ing very small changes, a constant greater than zero may be used in Definition 3.

Definition 4 (Attribute evolution rule). An attribute evolution rule is a
tuple R : (V,E, λbefore, λafter) that indicates how the attribute values of a con-
nected subgraph (V,E) have evolved for two consecutive time intervals in a trend
graph G′. The subgraph (V,E) is composed of a vertex set V and an edge set
E ⊆ V × V .The relations λbefore and λafter specify the attribute values of the
vertices at two consecutive time intervals, and are defined as λbefore : V ×A → Ω
and λafter : V × A → Ω, respectively. Furthermore, it is required that for all
v ∈ V , there exists some attributes a, b ∈ A and some values ω, γ ∈ Ω such that
(v, a, ω) ∈ λbefore and (v, b, γ) ∈ λafter. In other words, each vertex of an AER
must be described using at least one attribute. The antecedent and consequent of
the rule R are defined as (V,E, λbefore) and (V,E, λafter), respectively.

For instance, consider the four attributes A = {a, b, c, d} of the trend graph
of Fig. 1 B). Fig. 2 shows an attribute evolution rule consisting of three vertices
V = {x, y, z} and two edges E = {(x, y), (y, z)} indicating how attributes values
have changed for two successive time intervals. For instance, it indicates that
the attribute a of vertex x has increased (a+) and the attribute b of vertex z
has decreased (b−), which then caused vertex y’s attribute c to increase and
attribute d to decrease at the next timestamp.

x

z
y

b: -

a: +
x

z

y

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

c: +
d: -

Fig. 2. An attribute evolution rule

An attribute evolution rule R may have multiple occurrences in a trend
graph, called matches. A match of a rule R is an injective mapping between the
vertices of the rule and a set of vertices of two consecutive time intervals of a
trend graph. It is formally defined as follows.

Definition 5 (Matches of an attribute evolution rule). Let there be a
trend graph G′ and a rule R : (V,E, λbefore, λafter). The rule R is said to have
an match φ from time interval j to j+1 iff there exists a subgraph (VS , ES) such
that VS ⊆ V ′j∩V ′j+1. ES ⊆ E ′j∩E ′j+1, and φ is a bijective mapping φ ⊆ V ×VS
such that ∃(vx, vy) ∈ E ⇔ ∃(φ(vx), φ(vy)) ∈ ES. Moreover, it is required that
∀(v, a) ∈ λbefore ⇒ ∃(φ(v), a) ∈ λ′j and ∀(v, a) ∈ λafter ⇒ ∃(φ(v), a) ∈ λ′j+1.
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Based on the concept of match, the support (occurrence frequency) of an
AER in a trend graph can be defined. However, one needs to be careful about
how to define the support because a subgraph may have many matches and
some of them may overlap [4]. If one simply defines the support of a subgraph
as its number of matches, then the support measure is neither monotonic nor
anti-monotonic, and thus would not allow to reduce the search space, but this
is important for developing an efficient pattern mining algorithm. To obtain an
anti-monotonic support measure for attribute evolution rules, this paper defines
the support as follows, inspired by the concept of minimum image based support
used in frequent subgraph mining in a single graph [4].

Definition 6 (C-support of a rule). Let matchesj,j+1(R,G′) be all matches
of an attribute evolution rule R in a trend graph G′ for time interval j to j + 1.
The c-support of R in G′ is defined as support(R,G′) =

∑
j=1...max−2 minv∈V |

{φ(v) : φ ∈ matchesj,j+1(R,G′)}|. In other words, the c-support of R for two
consecutive time intervals is the least number of distinct consequent nodes (from
G′) that a vertex from R is mapped to. And the c-support of R in the whole trend
graph G′ is the sum of R’s support for all consecutive time intervals.

For example, consider the small trend graph of Fig. 3 (left), where some
irrelevant attribute values have been omitted. Fig. 3 (right) shows the c-support
of three AERs, having 3, 2, and 3 matches, respectively, and a c-support of 2. A
proof that the c-support measure is anti-monotonic is given below.

Lemma 1 (Anti-monotonicity of the c-support). If an AER R2 is an at-
tribute extension of another rule R1, then support(R1) ≥ support(R2).

Proof. Let γ be the c-support of a rule R1, and R2 be an attribute extension of
R1. Since the c-support is the least number of distinct consequent nodes, the total
number of different consequent of R1 is γ. To obtain R2, an attribute is added to
R1, and each mapping of R1 can either be extended (+1) with the attribute or
not (+0) to obtain a mapping for R2. Hence, support(R2) ≤ γ ≤ support(R1).

Though the c-support measure is useful to filter infrequent patterns, it is de-
sirable to also assess how correlated the attributes of a rule are to filter out spu-
rious rules. In pattern mining, some popular measures to assess the correlation
between the consequent (C) and antecedent (A) of a rule A→ C that do not con-
sider time are the confidence and lift [1, 12]. The confidence of a rule is the ratio of
its support to that of its antecedent, that is conf(A→ C) = sup(A∩C)/sup(A),
which is an estimation of P (C|A) = P (A∩C)/P (A). But a drawback of the con-
fidence is that it does not consider P (C). The lift addresses this problem. For
this reason, we use the lift as main measure to select interesting rules. The lift is
defined as lift(A→ C) = P (A∩C)/[P (A)×P (C)] = conf(A→ C)/P (C). The
confidence can be rewritten as P (C|A) = [P (A|C)×P (C)]/P (A) by the Bayes’s
theorem. Based on this observation and because P (C) for AERs is constant
while P (A) can contain many vertices and change, we redefine the confidence as
P (A|C), which we call the confidence based on consequent (c-confidence). This
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measure can also find strongly correlated patterns but is easier to calculate than
the original confidence. Then, the lift can be rewritten as P (A|C)/P (A). The
proposed AER-Miner algorithm checks both the c-confidence and lift of rules to
filter spurious rules.

Definition 7 (C-confidence of a rule). The c-confidence of an AER R :
(V,E, λbefore, λafter) in a trend graph G′ is defined as conf(R,G′) = Support(R,
G′) /Support(Consequent,G′).

Definition 8 (Expected confidence of an antecedent attribute). The
Expected confidence of an antecedent attribute a in a trend graph G′ is defined as
expectedConf(a) = P (a) if there is no rule consequent and as expectedConf(a)
= P (a|c) if there is a consequent attribute c.

Definition 9 (Lift of a rule). The lift of an AER R in a trend graph G′
is defined as lift(R,G′) = conf(R,G′) / expectedConf(antecedent, G′). The
expected confidence of the antecedent attribute is the probability that its attributes
will appear without other conditional influence. The lift is the ratio of the real
probability to the expected probability and it can measure the effect of adding an
attribute to the antecedent of a smaller pattern. The lift can thus assess if the
consequent and antecedent are correlated. A lift less than, equal to, and greater
than 1, indicates a negative correlation, no correlation and a positive correlation,
respectively.

For instance, consider the trend graph of Fig. 3 (left), and that each trend
{−,=,+} has a uniform occurrence probability (each attribute’s expected con-
fidence is 1/3). Fig. 3 (right) shows the c-support and c-confidence of three
rules. The lift of rule < (a+) >→< (c+) > is (3/5)/(1/3) = 9/5. The lift of <
(b−) >→< (c+) > is (2/5)/(1/3) = 6/5. The c-confidence of < (a+), (b−) >→<
(c+) > can be calculated when adding attribute b− to rule< (a+) >→< (c+) >,
as conf = P (b− | < (a+) >→ < (c+) >) = 2/3. Thus, its lift is 5/3.

b: -

a: +𝒕𝒕𝟎𝟎 𝒕𝒕𝟏𝟏

a: +

a: +

c: +

c: +

c: +

b: -

c: +

a: +

c: +

b: -Antecedent:

Consequent:

C-support: 2 2 2

a: +

C-confidence: 3/5 2/5 2/3

Fig. 3. The c-support and c-confidence of three AERs

Definition 10 (Problem setting). Given a dynamic attributed graph G, a
minimum support threshold minsup, a minimum confidence threshold minconf ,
and a minimum lift threshold minlift, the problem of AER mining is to output
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all valid AERs. A rule R is frequent if support(R,G′) ≥ minsup. A rule is said
to be valid if it is frequent, conf(R,G′) ≥ minconf and lift(R,G′) ≥ minlift.

The traditional problem of mining frequent patterns in a graph is a hard
problem because the number of patterns is very large and it requires to do sub-
graph isomorphism checking, which is an NP-complete problem [4]. The problem
of AER mining is more difficult for two reasons. First, the graph is dynamic and
thus finding matches of each rule must be done for many time intervals. Second,
considering many attributes greatly increases the number of potential patterns.
Let there be a trend graph containing v distinct vertices and e distinct edges
transformed into a trend graph using a set of trends Ω. The number of possible
attribute value combinations for each vertex is (2|a| − 1) × |Ω|. The number of
edges combinations to create a subgraph is (2|e| − 1) if we ignore the require-
ments that subgraphs must be connected 4. And since a rule has an antecedent
and consequent and there are v vertices, the search space is in the worst case
roughly 2× (2|e| − 1) × v × (2|a| − 1)× 3, so a pruning strategy must be used.

4 The AER-Miner Algorithm

This section introduces the proposed AER-Miner algorithm to efficiently find all
AERs in a dynamic attributed graph (or trend graph). An attribute evolution
rule R is a tuple of the form R : (V,E, λbefore, λafter), where Vbefore and Vafter
are relations mapping nodes of the rule’s antecedent and consequent to attribute
values (for two consecutive timestamps), and where each node may be described
using multiple attributes. Hence, the structure of an AER is relatively complex.
Thus, rather than trying to enumerate all AERs directly, the proposed algo-
rithm first finds core patterns, which are a simplified form of AERs. AER-Miner
performs a breadth-first search using a generate-candidate-and-test strategy to
explore the search space of core patterns. Then, core patterns are merged to
obtain the AERs. The benefit of using this approach is that part of the AER
mining problem can be solved using a modified frequent subgraph mining algo-
rithm. The following paragraphs describe the main steps of AER-Miner and how
it reduces the search space. Then, the pseudo-code is presented.

Step 1: Generating 1-size Core Patterns. The algorithm first considers
each attribute from the dynamic attributed graph to generate core patterns
having that attribute as consequent.

Definition 11 (Core Pattern). A core pattern is an AER composed of a con-
sequent node and several antecedent nodes, where each consequent-antecedent
node pair is connected. Moreover, each node is described using a single attribute.
We define a k-size pattern as a core pattern whose total vertice count is k. A
core pattern of size k >= 2, can be considered as an attribute evolution rule.

4 It was observed using computer simulations that the number of connected labeled
graphs with v = 2, 3, 4, 5, 6, 7, and 8 nodes is 1, 4, 38, 728, 26,704, 1,866,256, and
251,548,592, respectively (https://oeis.org/A001187).
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AER-Miner calculates the expected confidence of each attribute, that is with-
out considering the impact of other attributes.

Step 2: Extending Core Patterns. Then, AER-Miner extends the initial
core patterns to generate larger core patterns. A generate-candidate-and-test
approach is utilized where a core pattern is extended by adding a new node
with an attribute to the antecedent node list of a pattern to obtain a novel
core pattern. This is done iteratively following a breadth-first search. During an
iteration, k-1 size patterns are combined to generate k-size patterns, and this
process ends when no new pattern can be generated. To avoid generating a same
pattern more than once, attributes are sorted according to the lexicographical
order, and an attribute is used to extend a core pattern only if it is larger than
the last attribute in the pattern’s antecedent node list. To reduce the search
space and filter many uninteresting patterns, attributes that have no changes
for an attribute (=) are not used for extending core patterns.

Moreover, the support measure is used for reducing the search space. While
some other studies have defined the support of a pattern as the number of its
instances (called matches), this measure is not anti-monotonic. In other words,
an extension of a core pattern may have more, the same number, or less matches.
To be able to reduce the search space, the redefined support measure (Definition
6) is used, which is anti-monotonic. Thus, if a core patterns has a support less
than minsup, it can be safely ignored as well as all its extensions. This search
space pruning property can considerably reduce the search space.

Besides, the lift measure (Definition 9) is also used to reduce the search
space. If the lift of a core pattern is less than minlift, it is discarded and all
its extensions are ignored. The proof that the lift is anti-monotonic w.r.t core
pattern extensions is omitted due to the page limitation.

Step 3: Filtering and Merging Core Patterns to Obtain AERs. After
obtaining all core patterns, AER-Miner filters core patterns based on their con-
fidence. The reason for filtering patterns at Step 3 rather than Step 2 is that the
confidence is not anti-monotonic. In other words, extending a rule antecedent
with more attributes may result in a rule having a greater, smaller or equal con-
fidence. For example, the confidence of a rule (A)→ (C) may be larger than that
of a rule (A,B) → (C), where A and B are two attributes of different nodes.
The reason is that A and B may each have a positive correlation with C.

Thereafter, the remaining core patterns are merged to obtain the AERs that
respect the pattern selection conditions. A pair of core patterns is merged to
generate an AER if (1) they have the same antecedent attributes and (2) they
have the same consequent. A merge operation is considered successful if more
than 90% of the support is retained.

The Pseudocode. AER-Miner (Algorithm 1) takes as input a dynamic
attributed graph G or trend graph G′, and the minsup, minlift and minconf
thresholds. The algorithm first initializes a map structure for storing candidate
core patterns. All patterns having a single consequent attribute are added to
that map (Line 1). Then, all possible core patterns are generated and stored in a
list (Line 2). Then a loop is performed to iteratively generate larger core patterns
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(Line 3 to 21). Finally, uninteresting patterns are filtered using minconf , and
others are merged to obtain the set of AERs.

Algorithm 1: The AER-Miner algorithm

input : a dynamic attributed graph G or trend graph G′, the minsup,
minlift and minconf thresholds

output: all the valid attribute evolution rules

1 Initialize a core pattern Map mapcandidates <core pattern,instances> for
growing patterns. Initially, each pattern contains one consequent attribute.

2 Initialize a list listpatterns for storing all possible core patterns.
3 while mapcandidates 6= ∅ do
4 mapk+1sizecandidate ⇐ ∅
5 foreach candidate ∈ mapcandidates do
6 pattern← candidate.key
7 instances← candidate.value
8 foreach attr ∈ attributelist do
9 if attr ≥ the last attribute of pattern and attr 6=′=′ then

10 newPattern← pattern ∪ attr
11 newInstances← extendInstances(pattern, attr, instaces)
12 support⇐ sizeofnewInstance
13 lift, confidence← calLiftAndConfi(pattern, attr, instaces)
14 if support ≥ minsup and lift ≥ minlift then
15 put < newPattern, newInstance >∈ mapk+1sizecandidate

16 end

17 end

18 end

19 end
20 listpatterns ← listpatterns ∪mapk+1sizecandidate

21 end
22 listpatterns ← filterPatterns(listpatterns,minconf)
23 Return AERs = listpatterns ∪mergePatterns(listpatterns)

5 Experimental evaluation

Experiments were performed to evaluate the performance of AER-Miner and its
ability to discover interesting patterns in real data. AER-Miner was implemented
in Java and experiments were carried out on a 3.6 GHz Intel Xeon PC with 32 GB
of main memory, running Windows 10. Two real world datasets were used in the
experiments and two synthetic datasets were generated to assess the statistical
validity of AERs. The source code of AER-Miner and datasets can be down-
loaded from the open-source SPMF data mining library http://www.philippe-
fournier-viger.com/spmf/. The following datasets were used:



12 Fournier-Viger, P., He, G., Lin, Gomes, H. M.

DBLP [6] is a co-authorship dataset containing data from the DBLP on-
line bibliographic service. There are 2,723 vertices, each representing an au-
thor having published at least 10 papers in data mining and/or database con-
ferences/journals between 1990 to 2010. This time period is divided into nine
timestamps: ([1990-1994][1992-1996]...[2004-2008][2006-2010]). An edge indicates
a co-authorship relation between two authors, while an attribute value indicates
the number of papers published by an author in a conference/journal.

US Fight [11] contains data about US air traffic during the Katrina hurricane
period (from 01/08/2005 to 25/09/2005). Vertices stand for US airports. Two
vertices are connected by an edge if there was a flight connecting them during
the time period.

Moreover, we randomly generated two datasets, named synthetic-DBLP and
synthetic-USFlight. They have the same vertex, average edge, timestamp and
attribute count as the DBLP and US Flight datasets, respectively. But attribute
values of each vertex were generated following a Gaussian distribution. Charac-
teristics of the datasets are as follows. The number of vertices, average edges per
timestamps, timestamps and attribute count for DBLP and synthetic DBLP is
2,723, 10,737, 9 and 43, while for the US Flight and synthetic-USFlight, it is
280, 1,206, 8 and 8.

Statistical validation experiment. The first experiment was designed to
check if AER-Miner can find statistically valid rules and determine an appropri-
ate range of minlift values to obtain valid rules. For this purpose, AER-Miner
was run on each real dataset and the corresponding synthetic dataset while vary-
ing the minlift parameter. Because an AER describes the correlation between
the attributes of a rule’s antecedent and consequent, and that synthetic datasets
have the same structure as real datasets except for the randomly generated at-
tribute values, no AER should be found in the synthetic datasets for high enough
minlift values. The minlift threshold was increased from 1.05 (weak positive
correlation) to 1.4 (strong positive correlation) while noting the number of pat-
terns found. The minsup threshold was set to a fixed value (0.004 for DBLP
and 0.004 for US Flight) that is high enough to find patterns, but minsup was
not varied because it has a small influence on correlation.

Fig. 4 shows results for the (a) DBLP and (b) US Flight datasets. It can be
observed that no AER was found in synthetic datasets in most cases, while some
were found in real data. This is reasonable as synthetic datasets contain random
values that are weakly correlated. Because AERs were found in synthetic data
for minlift < 1.1, it can be concluded that this parameter should be set to a
value of at least 1.1 to find valid rules. Otherwise, random AERs may be found.

Quantitative experiments. Three additional experiments were done to
evaluate the influence of dataset characteristics and parameters values on the
performance of AER-Miner in terms of runtime and peak memory usage.

First, the influence of a dynamic attributed graph’s properties on perfor-
mance was assessed. Attribute count was first varied, while parameter values
where fixed (minsup = 0.04, minlift = 1.3 and minconf = 0.3). Fig. 5 (a)
shows the influence of attribute count on runtime and memory for the DBLP
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Fig. 4. Statistical validation with real and synthetic datasets.

dataset. As attribute count increased, execution times and memory consumption
increased. But there is a difference between the growth rate of execution time and
memory. At first, when attribute count is small, execution time increases slowly.
Then, when the attribute count becomes quite large, its grows more quickly and
then remains stable. For memory, it is the opposite. This is because when the
attribute count is small, no attribute correlations are found. Thus, most of the
memory is spent for storing the dynamic attributed graph, while as the attribute
count increases, much memory is spent to store (candidate) patterns in memory.

Second, the influence of a dynamic attributed graph’s graph count (number
of timestamps) on performance was evaluated. Fig. 5 (b) shows results for the
US Flight dataset when the algorithm’s parameters are fixed (minsup = 0.04,
minlift = 1.3 and minconf = 0.3). It is found that execution time linearly
increases and memory also increases as graph count increases. This shows that
AER-Miner has excellent scalability for processing numerous time periods.
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Fig. 5. Influence of attribute count and graph count on performance.

Third, an experiment was done on DBLP to evaluate the influence of the
minsup and minlift thresholds on runtime and pattern count. Fig. 6 (a) shows
results when minsup is varied while minlift = 1.3 and minconf = 0.3 are fixed.
Fig. 6 (b) presents results when minlift is increased while minsup = 0.004 and
minconf = 0.2 are fixed. It is found in Fig. 6 (a) that as the minsup constraint
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is less strict, runtime and pattern count are greater, and that pattern count
increases dramatically for minsup = 0. It is observed in Fig. 6 (b) that increasing
minlift helps reducing the search space and that increasing minlift influences
less the performance for values above 1.4. This is because most spurious (random
patterns) have a lift smaller than 1.4.
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Fig. 6. Influence of minsup and minlift on runtime and pattern count.

Qualitative assessment. An additional evaluation was performed on the
DBLP and US Flight datasets to assess the usefulness of patterns found. First,
rules were extracted from DBLP using minsup = 0.004, minlift = 1.5 and
minconf = 0.3. An example pattern found is < (PV LDB+), (PV LDB+),
(PV LDB+) >→< (V LDB−) >. It indicates that co-authors of an author
who published more papers in PVLDB then published less papers in VLDB
at the next timestamp. This is reasonable since there is a correlation between
VLDB and PVLDB and a person is likely to follow trends of his co-authors.
Another pattern is < (ICDE+) > → < (PV LDB+, EDBT+) >, which indi-
cates that if an author published more ICDE papers, his co-authors are more
likely to publish more in PVLDB and EDBT. Second, rules were extracted us-
ing minsup = 0.004, minlift = 1.24 and minconf = 0.3 from US Flight to
discover rules related to the impact of Hurricane Katrina on flights. The pat-
tern < (NbDeparture−) > → < (NbCancelation+) > was found to have many
occurrences. It indicates that departure cancellations caused by the hurricane
are strongly correlated with a flight cancellation increase at the next times-
tamp. Another interesting pattern is < (NbDeparture+), (NbDeparture+),
(NbDeparture+) > → < (NbDeparture+) >, which indicates that flights are
returning to normal after a hurricane.

6 Conclusion

This paper has proposed a novel type of patterns called attribute evolution rules,
indicating how changes of attribute values of multiple vertices may influence
those of others with a high confidence. An efficient algorithm named AER-Miner
was proposed to find these rules. Moreover, experiments on real data have shown
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that the proposed algorithm is efficient and that AERs can provide interesting
insights about real-life dynamic attributed graphs. In future work, we plan to
extend AER-Miner to let the user specify temporal constraints on AERs and
discover concise representations of AERs.
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