Skip to main content

An AI-Driven Predictive Modelling Framework to Analyze and Visualize Blood Product Transactional Data for Reducing Blood Products’ Discards

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12299))

Abstract

Maintaining an equilibrium between shortage and wastage in blood inventories is challenging due to the perishable nature of blood products. Research in blood product inventory management has predominantly focused on reducing wastage due to outdates (i.e. expiry of the blood product), whereas wastage due to discards, related to the lifecycle of a blood product, is not well investigated. In this study, we investigate machine learning methods to analyze blood product transition sequences in a large real-life transactional dataset of Red Blood Cells (RBC) to predict potential blood product discard. Our prediction models are able to predict with 79% accuracy potential discards based on the blood product’s current transaction data. We applied advanced data visualizations methods to develop an interactive blood inventory dashboard to help laboratory managers to probe blood units’ lifecycles to identify discard causes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A JavaScript library for building user interfaces (https://reactjs.org).

  2. 2.

    Data-Driven Documents, a JavaScript library for manipulating documents based on data (https://d3js.org).

References

  1. Guan, L., et al.: Big data modeling to predict platelet usage and minimize wastage in a tertiary care system. Proc. Natl. Acad. Sci. U. S. A. 114(43), 11368–11373 (2017). https://doi.org/10.1073/pnas.1714097114

    Article  MathSciNet  Google Scholar 

  2. Quinn, J., et al.: The successful implementation of an automated institution-wide assessment of hemoglobin and ABO typing to dynamically estimate red blood cell inventory requirements. Transfusion 59(7), 2203–2206 (2019). https://doi.org/10.1111/trf.15272

    Article  Google Scholar 

  3. van Dijk, N., Haijema, R., van Der Wal, J., Sibinga, C.S.: Blood platelet production: a novel approach for practical optimization. Transfusion 49(3), 411–420 (2009)

    Article  Google Scholar 

  4. Haijema, R., Van Dijk, N., Van Der Wal, J., Sibinga, C.S.: Blood platelet production with breaks: optimization by SDP and simulation. Int. J. Prod. Econ. 121(2), 464–473 (2009). https://doi.org/10.1016/j.ijpe.2006.11.026

    Article  Google Scholar 

  5. Stanger, S.H.W., Yates, N., Wilding, R., Cotton, S.: Blood inventory management: hospital best practice. Transfus. Med. Rev. 26(2), 153–163 (2012)

    Article  Google Scholar 

  6. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Manage. Sci. (2019). https://doi.org/10.1287/mnsc.2018.3253

  7. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992). https://doi.org/10.2307/2685209

    Article  MathSciNet  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:101093340324

    Article  MATH  Google Scholar 

  9. Cheng, C.K., Trethewey, D., Sadek, I.: Comprehensive survey of red blood cell unit life cycle at a large teaching institution in eastern Canada. Transfusion 50(1), 160–165 (2010). https://doi.org/10.1111/j.1537-2995.2009.02375.x

    Article  Google Scholar 

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in {P}ython. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 1171–1179. Curran Associates, Inc. (2015)

    Google Scholar 

  12. Villegas, R., Yang, J. Hong, S. Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings (2019)

    Google Scholar 

  13. Qiao, Y., Si, Z., Zhang, Y., Abdesslem, F.B., Zhang, X., Yang, J.: A hybrid Markov-based model for human mobility prediction. Neurocomputing 278, 99–109 (2018). https://doi.org/10.1016/j.neucom.2017.05.101

    Article  Google Scholar 

  14. Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world wide web surfing. In: The 2nd USENIX Symposium on Internet Technologies & System (1999)

    Google Scholar 

  15. Deshpande, M., Karypis, G.: Selective Markov models for predicting web page accesses. ACM Trans. Internet Technol. 4(2), 163–184 (2004)

    Article  Google Scholar 

  16. Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: a lossless model for accurate sequence prediction. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 177–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6_16

    Chapter  Google Scholar 

  17. Gueniche, T., Fournier-Viger, P., Raman, R., Tseng, V.S.: CPT+: decreasing the time/space complexity of the compact prediction tree. In: Cao, T., Lim, E.P., Zhou, Z.H., Ho, T.B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078, pp. 625–636. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18032-8_49

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is supported by the Blood Efficiency Accelerator Award by Canadian Blood Services. We thank the NSHA Central Zone Blood Transfusion Services for providing us the dataset and supporting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Sibte Raza Abidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rad, J., Cheng, C., Quinn, J.G., Abidi, S., Liwski, R., Abidi, S.S.R. (2020). An AI-Driven Predictive Modelling Framework to Analyze and Visualize Blood Product Transactional Data for Reducing Blood Products’ Discards. In: Michalowski, M., Moskovitch, R. (eds) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science(), vol 12299. Springer, Cham. https://doi.org/10.1007/978-3-030-59137-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59137-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59136-6

  • Online ISBN: 978-3-030-59137-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics