Skip to main content

A High-Throughput Tumor Location System with Deep Learning for Colorectal Cancer Histopathology Image

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2020)

Abstract

Colorectal cancer is one of the major causes of morbidity and mortality worldwide, however, when discovered at an early stage, it is highly treatable. As the number of specimens increases every year, there has been a boost in the diagnostic workload on pathologists in recent years. In parallel to the development of digital pathology, deep learning has demonstrated its strong capability in feature extraction and interpretation in a variety of medical applications. In this paper, we propose a high-throughput whole-slide image (WSI) analysis system to localize tumor regions accurately with a patch-based convolutional neural network (CNN). We employ Monte Carlo adaptive sampling for a fast detection of tumors at slide level and a conditional random field (CRF) model to integrate spatial correlation for better classification accuracy. We use three datasets of colorectal cancer from The Cancer Genome Atlas (TCGA) for performance evaluation. Compared with the regular WSI analysis, the experimental benchmark shows an obvious decrease in processing time while a noticeable improvement in classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dataset is freely available at https://portal.gdc.cancer.gov.

References

  1. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

    Article  Google Scholar 

  2. BenTaieb, A., Hamarneh, G.: Predicting cancer with a recurrent visual attention model for histopathology images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 129–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_15

    Chapter  Google Scholar 

  3. Bychkov, D., et al.: Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8(1), 3395 (2018)

    Article  Google Scholar 

  4. Cruz-Roa, A., et al.: High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection. PLoS ONE 13(5), e0196828 (2018)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  7. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  8. Janowczyk, A., Doyle, S., Gilmore, H., Madabhushi, A.: A resolution adaptive deep hierarchical (RADHical) learning scheme applied to nuclear segmentation of digital pathology images. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 6(3), 270–276 (2018)

    Google Scholar 

  9. Kather, J.N., et al.: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16(1), e1002730 (2019)

    Article  Google Scholar 

  10. Kather, J.N., et al.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019)

    Article  Google Scholar 

  11. Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field. arXiv preprint arXiv:1806.07064 (2018)

  12. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  13. Martino, L., Luengo, D., Míguez, J.: Independent Random Sampling Methods. SC. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72634-2

    Book  MATH  Google Scholar 

  14. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  15. Qaiser, T., Rajpoot, N.M.: Learning where to see: a novel attention model for automated immunohistochemical scoring. IEEE Trans. Med. Imaging 38(11), 2620–2631 (2019)

    Article  Google Scholar 

  16. Siegel, R., DeSantis, C., Jemal, A.: Colorectal cancer statistics. CA Cancer J. Clin. 64(2), 104–117 (2014)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  19. Tokunaga, H., Teramoto, Y., Yoshizawa, A., Bise, R.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12597–12606 (2019)

    Google Scholar 

  20. Wilbur, D.C.: Digital cytology: current state of the art and prospects for the future. Acta Cytol. 55(3), 227–238 (2011)

    Article  Google Scholar 

  21. Yan, J., Zhu, M., Liu, H., Liu, Y.: Visual saliency detection via sparsity pursuit. IEEE Signal Process. Lett. 17(8), 739–742 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, J., Shen, Y., Guo, Y., Wright, J.D., Jing, N., Liang, X. (2020). A High-Throughput Tumor Location System with Deep Learning for Colorectal Cancer Histopathology Image. In: Michalowski, M., Moskovitch, R. (eds) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science(), vol 12299. Springer, Cham. https://doi.org/10.1007/978-3-030-59137-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59137-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59136-6

  • Online ISBN: 978-3-030-59137-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics