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Abstract. In time-to-event prediction problems, a standard approach
to estimating an interpretable model is to use Cox proportional hazards,
where features are selected based on lasso regularization or stepwise re-
gression. However, these Cox-based models do not learn how different
features relate. As an alternative, we present an interpretable neural net-
work approach to jointly learn a survival model to predict time-to-event
outcomes while simultaneously learning how features relate in terms of
a topic model. In particular, we model each subject as a distribution
over “topics”, which are learned from clinical features as to help predict
a time-to-event outcome. From a technical standpoint, we extend exist-
ing neural topic modeling approaches to also minimize a survival anal-
ysis loss function. We study the effectiveness of this approach on seven
healthcare datasets on predicting time until death as well as hospital ICU
length of stay, where we find that neural survival-supervised topic mod-
els achieves competitive accuracy with existing approaches while yielding
interpretable clinical “topics” that explain feature relationships.
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1 Introduction

Predicting the amount of time until a critical event occurs—such as death, dis-
ease relapse, or hospital discharge—is a central focus in the field of survival
analysis. Especially with the increasing availability of electronic health records,
survival analysis data in healthcare often have both a large number of subjects
and a large number of features measured per subject. In coming up with an inter-
pretable survival analysis model to predict time-to-event outcomes, a standard
approach is to use Cox proportional hazards [6], with features selected using
lasso regularization [25] or stepwise regression [12]. However, these Cox-based
models do not inherently learn how features relate.

To simultaneously address the two objectives of learning a survival model for
time-to-event prediction and learning how features relate specifically through
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a topic model, Dawson and Kendziorski [8] combine latent Dirichlet allocation
(LDA) [3] with Cox proportional hazards to obtain a method they call survLDA.
The idea is to represent each subject as a distribution over topics, and each topic
as a distribution over which feature values appear. The Cox model is given the
subjects’ distributions over topics as input rather than the subjects’ raw feature
vectors. Importantly, the topic and survival models are jointly learned.

In this paper, we propose a general framework for deriving neural survival-
supervised topic models that is substantially more flexible than survLDA.
Specifically, survLDA estimates model parameters via variational inference up-
date equations derived specifically for LDA combined with Cox proportional
hazards; to use another other sort of combination would require re-deriving the
inference algorithm. In contrast, our approach combines any topic model and
any survival model that can be cast in a neural net framework; combining LDA
with Cox proportional hazards is only one special case. Importantly, our frame-
work yields survival-supervised topic models that are interpretable so long as the
underlying topic and survival models are interpretable. As a byproduct of taking
a neural net approach, we can readily leverage many deep learning advances. For
example, we can avoid deriving a special inference algorithm and instead use any
neural net optimizer such as Adam [17] to learn the joint model in mini-batches,
which scales to large datasets unlike survLDA’s variational inference algorithm.

As numerous combinations of topic/survival models are possible, for ease of
exposition, we demonstrate how to combine LDA with Cox proportional hazards
in a neural net framework, yielding a neural variant of survLDA. We refer to
our neural variant as survScholar since we build on scholar [5], a neural
net approach to learning LDA and various other topic models. We benchmark
survScholar on seven datasets, finding that it can yield performance compet-
itive with various baselines while also yielding interpretable topics that reveal
feature relationships. For example, on a cancer dataset, survScholar learns
two topics that are associated with longer survival time, and one topic associ-
ated with lower survival time. The first two pro-survival topics provide different
explanations for patients attributes correlated with surviving longer: one topic
is associated with normal vital signs and laboratory measurements, while the
other includes vital sign and laboratory derangements of sodium and creatinine.
survScholar can help discover such feature relationships that clinicians could
then verify. Meanwhile, when survScholar’s prediction is inaccurate, examin-
ing the topics learned could help with model debugging.

2 Background

We begin with some background and notation on topic modeling and survival
analysis. For ease of exposition, we phrase notation in terms of predicting time
until death; other critical events are possible aside from death.

We assume that we have access to a training dataset of n subjects. For each
subject, we know how many times each of d “words” appears, where the dictio-
nary of words is pre-specified (continuous clinical feature values are discretized
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into bins). As an example, one word might correspond to “white blood count
reading in the bottom quintile”; for a given subject, we can count how many
such readings the subject has had recorded in the past. We denote Xi,u to be
the number of times word u ∈ {1, . . . , d} appears for subject i ∈ {1, . . . ,n}.
Viewing X as an n-by-d matrix, the i-th row of X (denoted by Xi) can be
thought of as the feature vector for the i-th subject.

As for the training label for the i-th subject, we have two recordings: event
indicator δi ∈ {0, 1} specifies whether death occurred for the i-th subject, and
observed time Yi ∈ R+ is the i-th subject’s “survival time” (time until death) if
δi = 1 or the “censoring time” if δi = 0. The idea is that when we stop collecting
training data, some subjects are still alive. The i-th subject still being alive
corresponds to δi = 0 with a true survival time that is unknown (“censored”);
instead, we know that the subject’s survival time is at least the censoring time.

Topic Modeling A topic model transforms the i-th subject’s feature vector Xi

into a topic weight vector Wi ∈ Rk, where Wi,g is the fraction that the i-
th subject belongs to topic g = 1, 2, . . . , k. The Wi,g terms are nonnegative

and
∑k
g=1Wi,g = 1. For example, LDA models topic weight vectors Wi’s to be

generated i.i.d. from a user-specified k-dimensional Dirichlet distribution. Next,
to relate feature vector Xi with its topic weight vector Wi, let Xi,u denote the
fraction of times a word appears for a specific subject, meaning that Xi,u =

Xi,u/
(∑d

v=1Xi,v

)
. Then LDA assumes the factorization

Xi,u =

k∑
g=1

Wi,gAg,u (2.1)

for a topic-word matrix A ∈ Rk×d. Each row of A is a distribution over the
d vocabulary words and is assumed to be sampled i.i.d. from a user-specified
d-dimensional Dirichlet distribution. In matrix notation, X = WA. Standard
LDA is unsupervised and, given matrix X, estimates the matrices W and A.

Survival Analysis Standard topic modeling approaches like LDA do not solve
a prediction task. To predict time-to-event outcomes, we turn toward survival
analysis models. Suppose we take the i-th subject’s feature vector to be Wi ∈ Rk
instead of Xi. As this notation suggests, when we combine topic and survival
models, Wi corresponds to the i-th subject’s topic weight vector; this strategy for
combining topic and survival models was first done by Dawson and Kendziorski
[8], who worked off of the original supervised LDA formulation by McAuliffe and
Blei [23] (which is not stated for survival analysis). We treat the training data
as (W1,Y1, δ1), . . . , (Wn,Yn, δn), disregarding the “raw” feature vectors Xi’s.

The standard survival analysis prediction task can be stated as using the
training data (W1,Y1, δ1), . . . , (Wn,Yn, δn) to estimate, for any test subject with
feature vector w ∈ Rk, the subject-specific survival function

S(t|w) = P(subject survives beyond time t | subject’s feature vector is w).
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Importantly, unlike standard regression where, for any test feature vector w, we
predict a single real number, here we predict a whole function S(·|w).

Our neural survival-supervised topic modeling framework crucially requires
that the we can construct a predictor Ŝ(·|w) for the subject-specific survival
function S(·|w) by minimizing a differentiable loss. Numerous survival models
satisfy this criterion. For example, consider the classical Cox proportional haz-
ards model [6]. We learn a parameter vector β ∈ Rk that weights the features,
i.e., prediction for an arbitrary feature vector w ∈ Rk is based on the inner
product β>w. The differentiable loss function for the Cox model is

LCox(β) =

n∑
i=1

δi

[
− β>Wi + log

n∑
j=1 s.t. Yj≥Yi

exp(β>Wj)
]
. (2.2)

After computing parameter estimate β̂ by minimizing LCox(β), we can estimate
survival functions S(·|w) via the following approach by Breslow [4]. Denote
the unique times of death in the training data by t1, t2, . . . , tm. Let di be the
number of deaths at time ti. We first compute the so-called hazard function

ĥi := di/(
∑n
j=1 s.t. Yj≥Yi

eβ̂
>Wj ) at each time index i = 1, 2, . . . ,m. Next, we

form the “baseline” survival function Ŝ0(t) := exp(−
∑m
i=1 s.t. ti≤t ĥi). Finally,

subject-specific survival functions are estimated to be powers of the baseline

survival function: Ŝ(t|w) := [Ŝ0(t)]exp(β̂
>w).

3 Neural Survival-Supervised Topic Models

We now present our proposed neural survival-supervised topic modeling frame-
work. Our framework can use any topic model that has a neural net formulation
(e.g., neural versions of LDA [3], SAGE [10], and correlated topic models [20]
are provided by Card et al. [5]; recent topic models like the Embedded Topic
Model [9] can also be used). Moreover, our framework can use any survival model
learnable by minimizing a differentiable loss (e.g., Cox proportional hazards [6]
and its lasso/elastic-net-regularized variants [25], the Weibull accelerated failure
time (AFT) model [15], and all neural survival models we are aware of). For ease
of exposition, we focus on combining LDA with the Cox proportional hazards
model, similar to what is done by Dawson and Kendziorski [8] except we do this
combination in a neural net framework.

We first need a neural net formulation of LDA. We can use the scholar
framework by Card et al. [5]. Card et al. do not explicitly consider survival
analysis in their setup although they mention that predicting different kinds of
real-valued outputs can be incorporated by using different label networks. We
use their same setup and have the final label network perform survival analysis.
We give an overview of scholar before explaining our choice of label network.

The scholar framework specifies a generative model for the data, including
how each individual word in each subject is generated. In particular, recall that
Xi,u denotes the number of times the word u ∈ {1, 2, . . . , d} appears for the
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i-th subject. Let vi denote the number of words for the i-th subject, i.e., vi =∑d
u=1Xi,u. We now define the random variable ψi,` ∈ {1, 2, . . . , d} to be what

the `-th word for the i-th subject is (for i = 1, 2, . . . ,n and ` = 1, 2, . . . , vi).
Then the generative process for scholar with k topics is as follows, stated for
the i-th subject:

1. Generate the i-th subject’s topic distribution:
(a) Sample W̃i from a logistic normal distribution with mean vector µ ∈ Rk

and covariance matrix Σ ∈ Rk×k.
(b) Set the topic weights vector for the i-th subject to be Wi = softmax(W̃i).

2. Generate the i-th subject’s words:
(a) Set word parameter φi = fword(Wi), where fword is a generator network.
(b) For word ` = 1, 2, . . . , vi: Sample ψi,` ∼ Multinomial(softmax(φi)).

3. Generate the i-th subject’s output label:
Sample Yi from a distribution parameterized by label network flabel(Wi).

Different choices for the parameters µ,Σ, fword, and flabel lead to different topic
models. The parameters are learned via amortized variational inference [18, 24].
To approximate LDA where topic distributions are sampled from a symmetric
Dirichlet distribution with parameter α > 0, we set µ to be the all zeros vector,
Σ = diag((r − 1)/(αr)), and fword(w) = w>H where H ∈ Rk×d has a Dirichlet
prior per row. We describe how to set flabel to obtain survival supervision next.

Survival Supervision To incorporate the Cox survival loss, we change step 3
of the generative process above to be deterministic and output the variable
Ξi = flabel(Wi) := β>Wi for parameter vector β ∈ Rk. In particular, we do
not model how observed times Yi’s are generated; modeling Ξi’s is sufficient.
Then we can minimize the Cox proportional hazards loss from equation (2.2),
rewritten to use the variables Ξi’s that are parameterized by β:

LCox(β) =

n∑
i=1

δi

[
−Ξi + log

n∑
j=1 s.t. Yj≥Yi

exp(Ξi)
]
, where Ξi = β>Wi. (3.1)

For a hyperparameter η > 0 that weights the importance of the survival loss,
the final overall loss that gets minimized is the sum of ηLCox(β) and scholar’s
topic model loss (given by the negation of equation (4) in the scholar paper
[5]). We refer to the resulting model as survScholar.

We remark that rewriting the Cox loss to use Ξi variables (for which we
can replace the inner product Ξi = β>Wi with a neural net Ξi = g(Wi)) is by
Katzman et al. [16] and also works for the Weibull AFT model.

Model Interpretation For the g-th topic learned, we can look at its distribution
over words Ag ∈ Rd (given in equation (2.1)) and, for instance, rank words by
their probability of appearing for topic g (our experiments later rank words using
a notion of comparing to background word frequencies). The g-th topic is also
associated with Cox regression coefficient βg, where β = (β1,β2, . . . ,βk) ∈ Rk is
the parameter from equation (3.1). Under the Cox model, βg being larger means
that the g-th topic is associated with shorter survival times.
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Table 1. Basic characteristics of the survival datasets used.
Dataset Description # subjects # features % censored

support-1 acute resp. failure/multiple organ sys. failure 4194 14 35.6%
support-2 COPD/congestive heart failure/cirrhosis 2804 14 38.8%
support-3 cancer 1340 13 11.3%
support-4 coma 591 14 18.6%

unos heart transplant 62644 49 50.2%
metabric breast cancer 1981 24 55.2%
mimic(ich) intracerebral hemorrhage 1010 1157 0%

4 Experimental Results

Data We conduct experiments on seven datasets: data on severely ill hospital-
ized patients from the Study to Understand Prognoses Preferences Outcomes and
Risks of Treatment (SUPPORT) [19], which—as suggested by Harrell [11]—we
split into four datasets corresponding to different disease groups (acute respi-
ratory failure/multiple organ system failure, cancer, coma, COPD/congestive
heart failure/cirrhosis); data from patients who received heart transplants in
the United Network for Organ Sharing (UNOS);1 data from breast cancer pa-
tients (METABRIC) [7]; and lastly patients with intracerebral hemorrhage (ICH)
from the MIMIC-III electronic heath records dataset [14]. For all except the last
dataset, we predict time until death; for the ICH patients, we predict time until
discharge from a hospital ICU. Basic characteristics of these datasets are re-
ported in Table 1. We randomly divide each dataset into a 80%/20% train/test
split. Our code is available and includes data preprocessing details.2

Experimental Setup We benchmark survScholar against a total of 7 baselines:
4 classical methods (Cox proportional hazards [6], lasso-regularized Cox [25], k-
nearest neighbor Kaplan-Meier [2, 22], and random survival forests (RSF) [13]),
2 deep learning methods (DeepSurv [16] and DeepHit [21]), and a naive two-
stage decoupled LDA/Cox model (fit unsupervised LDA first and then fit a
Cox model). For all methods, 5-fold cross-validation on training data is used
to select hyperparameters (if there are any) prior to training on the complete
training data. Hyperparameter search grids are included in our code. For both
cross-validation and evaluating test set accuracy, we use the time-dependent
concordance Ctd index [1], which roughly speaking is the fraction of pairs of
subjects in a validation or test set who are correctly ordered, accounting for
temporal and censoring aspects of survival data. Similar to area under the ROC
curve for classification, a Ctd index of 0.5 corresponds to random guessing and 1
is a perfect score. For every test set Ctd index reported, we also compute its 95%
confidence interval, which we obtain by taking bootstrap samples of the test set
with replacement, recomputing the Ctd index per bootstrap sample, and taking
the 2.5 and 97.5 percentile values.

1We use the UNOS Standard Transplant and Analysis Research data from the
Organ Procurement and Transplantation Network as of September 2019, requested at:
https://www.unos.org/data/

2https://github.com/lilinhonglexie/NPSurvival2020

https://www.unos.org/data/
https://github.com/lilinhonglexie/NPSurvival2020
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Table 2. Test set Ctd indices with 95% bootstrap confidence intervals.
Model

Dataset
support-1 support-2 support-3 support-4 unos metabric mimic(ich)

cox
0.630 0.571 0.569 0.592 0.583 0.664 0.610

(0.606, 0.655) (0.538, 0.604) (0.531, 0.607) (0.537, 0.649) (0.575, 0.592) (0.622, 0.706) (0.564, 0.652)

lasso-cox
0.627 0.567 0.556 0.603 0.557 0.664 0.667

(0.604, 0.652) (0.535, 0.600) (0.517, 0.594) (0.538, 0.666) (0.548, 0.565) (0.623, 0.708) (0.621, 0.712)

k-nn
0.601 0.581 0.557 0.501 0.584 0.669 0.563

(0.577, 0.628) (0.545, 0.614) (0.517, 0.592) (0.432, 0.576) (0.576, 0.592) (0.627, 0.708) (0.518, 0.612)

rsf
0.602 0.604 0.568 0.492 0.587 0.697 0.651

(0.575, 0.628) (0.570, 0.636) (0.530, 0.601) (0.414, 0.575) (0.579, 0.595) (0.659, 0.736) (0.602, 0.697)

deepsurv
0.636 0.555 0.555 0.602 0.580 0.686 0.616

(0.611, 0.660) (0.521, 0.589) (0.517, 0.591) (0.548, 0.659) (0.572, 0.589) (0.644, 0.725) (0.571, 0.661)

deephit
0.633 0.579 0.547 0.590 0.598 0.683 0.598

(0.607, 0.660) (0.548, 0.609) (0.511, 0.585) (0.518, 0.657) (0.590, 0.606) (0.644, 0.721) (0.553, 0.649)

naive lda/cox
0.586 0.565 0.525 0.607 0.537 0.661 0.599

(0.559, 0.611) (0.533, 0.595) (0.486, 0.563) (0.541, 0.672) (0.528, 0.545) (0.622, 0.698) (0.549, 0.646)

survScholar
0.630 0.587 0.568 0.567 0.588 0.690 0.619

(0.604, 0.655) (0.553, 0.618) (0.528, 0.605) (0.509, 0.625) (0.580, 0.595) (0.649, 0.731) (0.572, 0.661)

survScholar-few
0.637 0.580 0.568 0.586 0.588 0.695 0.590

(0.612, 0.662) (0.547, 0.610) (0.528, 0.605) (0.532, 0.640) (0.581, 0.596) (0.656, 0.735) (0.547, 0.632)

For survScholar, we also include a variant survScholar-few that in-
stead of picking whichever hyperparameters (number of topics k and the sur-
vival loss importance weight η) achieve the highest training cross-validation Ctd

index, we instead favor choosing a hyperparameter setting with the fewest num-
ber of topics that achieves a cross-validation Ctd index within 0.005 of the best
score. We empirically found that often a much fewer number of topics achieves a
training cross-validation score that is nearly as good as the max found. For ease
of model interpretation, using a fewer number of topics is preferable.

Results Test set Ctd indices are reported in Table 2 with 95% confidence inter-
vals. The main takeaways are that: (a) the two survScholar variants are the
best or nearly the best performers on support-1, support-3, and metabric;
(b) even when the survScholar variants are not among the best performers,
they still do as well as some established baselines; (c) the two survScholar vari-
ants have very similar performance (so for interpretation, we use survScholar-
few), and (d) no single method is the best across all datasets.

Next, we interpret the learned topic models. We plot the topics learned by
survScholar-few for the support-3 dataset on cancer patients in Fig. 1: each
topic is a column in the plot, where above each topic, we denote its Cox β regres-
sion coefficient (higher means shorter survival time); rows correspond to features.
Deeper red colors indicate features that occur more for a topic; color intensity
values are multiplicative ratios compared to background word frequencies and
are explained in more detail in the appendix. The three topics in this support-3
cancer dataset indicate one anti-survival and two pro-survival topics. There is
a primary anti-survival topic described by old age, multicomorbidity, hypona-
tremia, and hyperventilation. The first pro-survival topic describes vital sign and
laboratory derangements including hypernatremia, elevated creatinine, hyper-
tension, and hypotension. The second pro-survival topic with slightly stronger
pro-survival association suggests otherwise-healthy patients with normal vital
signs and laboratory measurements.
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Cox Regression Coefficient

Fig. 1. Topics learned for
support-3. Rows index features,
columns index topics.

We summarize our findings for the
other datasets. For support-1, support-2,
support-4, unos, and metabric, only
two topics (corresponding to healthy and
unhealthy) are identified per dataset by
survScholar-few. For the mimic(ich)
dataset, survScholar-few has similar pre-
diction performance as deep learning base-
line DeepHit (c.f., Table 2) but neither
method performs as well as lasso-regularized
Cox. By inspecting the 5 topics learned by
survScholar-few, we find the topics dif-
ficult to interpret as too many features are
surfaced as highly probable. In this high-
dimensional setting where the number of fea-
tures is larger than the number of subjects, we
suspect that regularizing the model (e.g., by
replacing LDA with SAGE [10]) is essential to
obtaining interpretable topics. Our interpreta-
tions of learned topic models for all datasets
along with additional visualizations are avail-
able in our code repository.

5 Discussion

Despite many methodological advances in survival analysis with the help of deep
learning, these advances have mostly not focused on interpretability. Model in-
terpretation can be especially challenging when there are many features and how
they relate is unknown. In this paper, we show that neural survival-supervised
topic models provide a promising avenue for learning structure over features in
terms of “topics” that help predict time-to-event outcomes. These topics can be
used by practitioners to check if learned topics agree with domain knowledge
and, if not, to help with model debugging. Rigorous evaluations of other neural
survival-supervised topic models aside from fusing LDA with Cox are needed to
better understand which combinations of topic and survival models yield both
highly accurate time-to-event predictions and clinically interpretable topics.
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A Interpreting Topic Heatmaps

In this appendix, we explain how to interpret our topic heatmaps (Fig. 1 and
additional plots in our code repository). For many topic models including LDA,
a topic is represented as a distribution over d vocabulary words. scholar [5]
(and also our survival-supervised version survScholar) reparameterizes these
topic distributions; borrowing from SAGE [10], scholar represents a topic as
a deviation from a background log-frequency vector. This vector accommodates
common words that have similar frequencies across data points. When we visu-
alize a topic, we take this modeling approach into account and only choose to
highlight features that have positive log-deviations from the background. Given
a topic, having positive log-deviation is analogous to having higher conditional
probabilities in the classic topic modeling case but explicitly is relative to back-
ground word frequencies (rather than being raw topic word probabilities).

To fill in the details, in step 2(a) of survScholar’s generative process
(stated in Section 3), each word is drawn from the conditional distribution
softmax(γ+wTB), where γ ∈ Rd is the background log-frequency vector, w ∈ Rk
contains a sample’s topic membership weights, and B ∈ Rk×d encodes (per
topic) every vocabulary word’s log-deviation from the word’s background. This
is a reparameterization of how LDA is encoded, which has each word drawn
from the conditional distribution softmax(wTH) for H ∈ Rk×d. In particular,
note that Hg = γ + Bg for every topic g ∈ {1, 2, . . . , k}. The background log-
frequency vector γ is learned during neural net training. Note that SAGE [10]
further encourages sparsity in B by adding `1 regularization on B.

We found ranking words within a topic by their raw probabilities (Ag in
equation (2.1)) to be less interpretable than ranking words based on their de-
viations from their background frequencies (Bg) precisely because commonly
occurring background words make interpretation difficult. In fact, when Dawson
and Kendziorski [8] introduced survLDA, they used an ad hoc pre-processing
step to identify background words to exclude from analysis altogether. We avoid
this pre-processing and use log-deviations from background frequencies instead.

In heatmaps such as the one in Fig. 1, each column corresponds to a topic. For
the g-th topic, instead of plotting its raw log-deviations (encoded in Bg ∈ Rd),
which are harder to interpret, we exponentiated each word’s log-deviation to get
the word’s multiplicative ratio from its background frequency (i.e., we compute
exp(Bg)); the color bar intensity values are precisely these multiplicative ratios
of how often a word appears relative to the word’s background frequency.

To highlight features that distinguish topics from one another, we also sort
rows in the heatmap by descending differences between the largest and smallest
values in a row. Thus, features whose deviations vary greatly across topics tend
to show up on the top. A technical detail is that we sorted with respect to the
original features, rather than the one-hot encoded or binned features. Therefore,
as an example, all bins under mean blood pressure stay together. For features
associated with multiple rows in the heatmap, we computed the difference be-
tween the largest and smallest values for each row, and used the largest difference
(across rows) for sorting.
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