
Eliminating Message Counters in Threshold
Automata?

Ilina Stoilkovska1,2, Igor Konnov1, Josef Widder1, and Florian Zuleger2

1 Informal Systems, Vienna, Austria
{igor, josef}@informal.systems

2 TU Wien, Vienna, Austria
{stoilkov, zuleger}@forsyte.at

Abstract. Threshold automata were introduced to give a formal seman-
tics to distributed algorithms in a way that supports automated verifica-
tion. While transitions in threshold automata are guarded by conditions
over the number of globally sent messages, conditions in the pseudocode
descriptions of distributed algorithms are usually formulated over the
number of locally received messages. In this work, we provide an auto-
mated method to close the gap between these two representations. We
propose threshold automata with guards over the number of received
messages and present abstractions into guards over the number of sent
messages, by eliminating the receive message counters. Our approach
allows us for the first time to fully automatically verify models of dis-
tributed algorithms that are in one-to-one correspondence with their
pseudocode. We prove that our method is sound, and present a criterion
for completeness w.r.t. LTL-X properties (satisfied by all our benchmarks).

1 Introduction

In distributed algorithms, the actions that a process takes locally depend on the
messages it has received from the other processes in the system. To enable an
action, a process checks if a quorum has been obtained (e.g., majority, two-thirds,
etc.) by counting the received messages. Statements such as “wait until n − t
ECHO messages are received” or “if more than n/2 messages with the same value
are received”, where n is the number of processes and t is the upper bound on the
number of faults, are commonly found in the pseudocode of various algorithms.

The root cause that an action becomes enabled is not that enough messages
are received (which is information local to a process), but that enough processes
have sent messages (which is information global to the system). This leads to
redundancy when producing a formal model: the information about whether an
action is enabled is present in the global state of the system, as well as in the

? Partially supported by: Austrian Science Fund (FWF) via NFN RiSE (S11403,
S11405) and doctoral college LogiCS W1255; Interchain Foundation, Switzerland.
The final publication is available at Springer via https://doi.org/10.1007/
978-3-030-59152-6_11

https://doi.org/10.1007/978-3-030-59152-6_11
https://doi.org/10.1007/978-3-030-59152-6_11

local state of the processes. As [11] shows, this redundancy may lead to spu-
rious counterexamples when applying abstraction-based model checking, which
prevents abstraction-based techniques from scaling beyond small examples.

Threshold automata [13] were introduced to model and verify asynchronous
fault-tolerant distributed algorithms. They are effective for verification, as they
eliminate this redundancy by only allowing expressions over the global variables
(i.e., the variables that count the number of sent messages). That is, it suffices
to translate the check whether a quorum has been obtained to a check whether
enough messages have been sent. For many algorithms, this translation can easily
be done manually, as was the case in [12] (and [20], for synchronous algorithms).

However, different classes of algorithms, such as, e.g., Ben-Or’s randomized
consensus algorithm [2], have more complex guards, where conditions over re-
ceive variables can occur in negated form. To model such algorithms in the
threshold automata framework, one needs to translate negated conditions over
receive variables to positive conditions over the global variables. Owing to im-
plicit assumptions about the values of the receive and global variables, imposed
by the asynchronous computation and faulty environment, eliminating the re-
ceive variables by hand becomes increasingly tedious and error-prone.

In this paper, we propose an automated method that translates guard ex-
pressions over the local receive variables into guard expressions over the global
variables. We explicitly encode the relationship between the receive and global
variables using a so-called environment assumption. The input is a threshold
automaton, whose rules contain conditions over the receive variables, and an en-
vironment assumption. The output is a threshold automaton where the receive
variables are eliminated. We make the following contributions:

1. We introduce a new variant of threshold automata that allows guards over
receive variables, and thus is a formalization which captures the constructs
that appear in the pseudocode found in the literature.

2. To eliminate the receive variables, we use quantifier elimination for Pres-
burger arithmetic [16,9,17]. This results in quantifier-free guard expressions
over the shared variables, and constitutes a valid input to ByMC [14].

3. We show that this method is sound, i.e., that the resulting system is an over-
approximation of the original system. For completeness, we present classes of
threshold automata for which eliminating receive message counters preserves
linear temporal properties without the next operator (LTL-X).

4. In our experiments, we specified several fault-tolerant distributed algorithms
with guards over receive variables. We implemented our technique in a pro-
totype, and used it to obtain guards over global variables. When comparing
the automatically generated automata to the manually constructed ones, we
found flaws, such as missing or redundant rules, or incorrect guards in the
manual benchmarks (which were done by some of the authors of this paper).

5. We verified the correctness of the resulting threshold automata using ByMC.

In this way, we establish a fully automated pipeline, that for a given algorithm:
starts from a formal model of its pseucocode, produces a formal model suitable
for verification, and automatically verifies its correctness.

2

1 bool v := input_value({0, 1});
2 int rnd := 1;
3 while (true) do
4 send (R,rnd,v) to all;
5 wait for n - t messages (R,rnd,*);
6 if received more than (n + t) / 2
7 messages (R,rnd,w) then
8 send (P,rnd,w,D) to all;
9 else send (P,rnd,?) to all;

10 wait for n - t messages (P,rnd,*);
11 if received at least t + 1
12 message (P,rnd,w,D) then {
13 v := w;
14 if received more than (n + t) / 2
15 messages (P,rnd,w,D) then
16 decide w;
17 }
18 else v := random({0, 1});
19 rnd := rnd + 1;
20 od

I0 I1

SR

SP

E0

CT0 CT1

D1D0

E1

r1 : > 7→
{ns(0)++}

r2 : > 7→
{ns(1)++}

r8

r10

r9

r11

r4 r6r5

r3 : > 7→ {}

r7 : > 7→ {}

r12

1
2

1
2

r4 : ψ1 ∧ nri(0) > (n+ t)/2 7→ {ns(2)++} r5 : ψ1 ∧ nri(1) > (n+ t)/2 7→ {ns(3)++}
r6 : ψ1 ∧ nri(0) ≤ (n+ t)/2 ∧ nri(1) ≤ (n+ t)/2 7→ {ns(4)++}
r8 : ψ2 ∧ nri(2) ≤ (n+ t)/2 ∧ nri(3) ≤ (n+ t)/2 ∧ nri(2) ≥ t+ 1 7→ {}
r9 : ψ2 ∧ nri(2) ≤ (n+ t)/2 ∧ nri(3) ≤ (n+ t)/2 ∧ nri(3) ≥ t+ 1 7→ {}
r10 : ψ2 ∧ nri(2) > (n+ t)/2 7→ {} r11 : ψ2 ∧ nri(3) > (n+ t)/2 7→ {}
r12 : ψ2 ∧ nri(2) < t+ 1 ∧ nri(3) < t+ 1 7→ {}

Fig. 1. The pseudocode of the probabilistic Byzantine consensus protocol by Ben-
Or [2], with n > 5t, and its TA where ψ1 ≡ nri(0) + nri(1) ≥ n− t and ψ2 ≡ nri(2) +
nri(3) + nri(4) ≥ n − t. We use the notation r : ϕ 7→ {ns(m)++ | m ∈ M}, where ϕ is
the rule guard, and {ns(m)++ | m ∈M} is the set of increments of send variables.

2 Overview on Our Approach

We discuss our approach using the example in Figure 1. It shows the pseudocode
of the probabilistic consensus algorithm by Ben-Or [2], which describes the be-
havior of one process. A system consists of n processes, f of which are faulty;
there is an upper bound t ≥ f on the number of faults. We comment on some
typical peculiarities of the pseudocode in Figure 1: v in line 4 is a program vari-
able, w in line 7 is an (implicitly) existentially quantified variable whose scope
ranges from line 6 to line 8 (similarly in lines 11–13 and lines 14–16). Besides,
the tuple notation of messages hides the different types of its components: In
line 8, the quadruple (P, rnd,w,D) is sent, where P and D are message tags
(from a finite domain), while rnd is an algorithm variable (integer), and w is
the mentioned existentially quantified variable. In the other branch, in line 9 the
triple (P, rnd, ?) is sent, that is, the “w,D” pair is replaced by the single tag ’?’.
We highlight these constructs to emphasize the difficulty of understanding the
algorithm descriptions given in pseudocode, as well as the need for formal mod-
els. Irrespective of this formalization challenge, this algorithm and many other
fault-tolerant distributed algorithms typically contain the following constructs:

– setting the values of local variables, e.g., line 13,
– sending a message of type m, for m ∈M , e.g., line 4,

3

– waiting until enough messages of some type have been received, e.g., line 5.

Threshold Automata. In this paper, we present a method for obtaining a formal
model of a fault-tolerant distributed algorithm starting from its pseudocode. In
Section 3, we generalize threshold automata (TA) [13], and propose the extension
as a formalism to faithfully encode fault-tolerant distributed algorithms. The TA
specifies the behavior of one process; a parallel composition of multiple copies
of a TA specifies the behavior of a distributed system in a faulty environment.

The TA shown on the right in Figure 1 models one iteration of the while-loop
starting in line 3. It resembles a control flow graph, where:

– the locations of the TA encode the values of the local variables and the value
of the program counter. For example, I0 encodes that a process sets v to 0
in line 1, while E0 encodes the same assignment in line 13.

– sending a message m ∈ M is captured by incrementing the send variable
ns(m). For example, a process with initial value 0 sends (R, rnd, 0) in line 4.
We say that the message (R, rnd, 0) is of type 0, and model the sending by
a process moving from I0 to SR, and incrementing the variable ns(0).

– waiting until enough messages are received is modeled by keeping processes
in a so-called wait location, defined in Section 4. For example, once a process
sends a message in line 4, it moves to line 5, where it waits for n−t messages
that can be either (R, rnd, 0) or (R, rnd, 1). In the TA, the wait location SR
encodes that the process has sent a message of type either 0 or 1, and that
it now waits to receive at least n− t messages of type 0 or 1.

Eliminating Receive Variables. In Section 4, we introduce two types of TA: rcvTA,
which have local transitions guarded by expressions over local receive variables
nri(m), and sndTA, where the guards are over global send variables ns(m), for
m ∈M . We use rcvTA to encode the behavior of a single process, and sndTA for
verification purposes. The approaches in [12,13] encoded distributed algorithms
using sndTA, and defined techniques for verifying safety and liveness properties
of systems of sndTA. Thus, to apply these techniques to systems of rcvTA, our
goal is to automatically generate sndTA, given a rcvTA.

In Section 5, we propose an abstraction from rcvTA to sndTA, which trans-
lates guards over nri(m) to guards over ns(m), for m ∈ M , based on quantifier
elimination. The translation incorporates the relationship between the send and
receive variables in asynchronous faulty environments, encoded using an environ-
ment assumption Env. The environment assumption depends on the fault model;
e.g., for Byzantine faults, Env has constraints of the kind: nri(m) ≤ ns(m) + f ,
that is, a process can receive up to f messages more than the ones sent by correct
processes, where f is the number of faulty processes. Given a guard ϕ over the
receive variables, to obtain a guard ϕ̂ over the send variables, we apply quantifier
elimination to the formula ϕ′ ≡ ∃nri(0) . . . ∃nri(|M |−1) (ϕ∧Env). This produces
a quantifier-free formula ϕ̂ over the send variables, equivalent to ϕ′.

We implemented a prototype that automatically generates guards over the
send variables. We used Z3 [10] to automate the quantifier elimination step. We

4

encoded several algorithms from the literature using rcvTA, translated them to
sndTA using our prototype, and verified their correctness using ByMC [14], which
we report on in Section 8. For instance, for the guard ϕ6 ≡ nri(0) + nri(1) ≥
n−t∧nri(0) ≤ (n+t)/2∧nri(1) ≤ (n+t)/2, of rule r6 in Figure 1, our prototype
applies quantifier elimination to the formula ∃nri(0) . . . ∃nri(4) (ϕ6 ∧ Env) and
outputs the guard ϕ̂6 ≡ ns(0) + ns(1) + f ≥ n − t ∧ ns(0) + f ≥ (n − 3t)/2 ∧
ns(1) + f ≥ (n− 3t)/2∧ Ênv, where Ênv is what remains of Env after eliminating
nri(0), . . . , nri(4).

Soundness and criteria for completeness. In Section 6, we show that a system of
n copies of a generated sndTA is an overapproximation of a system of n copies of
the original rcvTA, i.e., we show that the translation is sound. This allows us to
check the properties of a system of n copies of rcvTA by checking the properties
of the system of n copies of sndTA. In general, the translation is not complete.
We characterize a class of TA, for which we show that the overapproximation
is precise w.r.t. LTL-X properties. We call these TA common, as they capture
common assumptions made by algorithm designers. A TA is common if a process
either: (1) does not wait for messages of the same type in different wait locations,
or (2) in a given wait location, it waits for more messages of the same type than
in any of its predecessor wait locations. In Section 7, we propose a formalization
of these two assumptions, allowing us to classify the TA of all our benchmarks as
common. We present a construction which given an infinite trace of the system
of n copies of sndTA, builds an infinite stutter-equivalent trace of the system of n
copies of a common rcvTA.

3 Threshold Automata

Let M denote the set of types of messages that can be sent and received by the
processes. A process i, for 1 ≤ i ≤ n, has three kinds of variables:

– local variables, xi, visible only to process i, that store values local to process i,
such as, e.g., an initial value or a decision value;

– receive variables nri(m), visible only to process i, that accumulate the num-
ber of messages of types m ∈M that were received by process i;

– send variables, ns(m), shared by all processes, that accumulate the number
of messages of types m ∈M that were sent by the processes.

A threshold automaton TA is a tuple (L, I,R, Γ,∆,Π,RC ,Env) whose com-
ponents are defined below.

Locations L, I. The locations ` ∈ L encode the current value of the process local
variables xi, together with information about the program counter. The initial
locations in I ⊆ L encode the initial values of the process local variables.

Variables Γ , ∆. The set Γ of shared variables contains send variables ns(m), for
m ∈M , ranging over N. The set ∆ of receive variables contains receive variables
nri(m), for m ∈ M , ranging over N. Initially, the variables in Γ and ∆ are set
to 0. As they are used to count messages, their value cannot decrease.

5

Parameters Π, Resilience Condition RC . The set Π of parameters contains at
least the parameter n, denoting the number of processes. The resilience condition
RC is a linear arithmetic expression over the parameters from Π. Let π be a |Π|-
dimensional parameter vector, and let p ∈ N|Π| be its valuation. If p satisfies RC ,
we call it an admissible valuation of π, and define the set PRC = {p ∈ N|Π| |
p |= RC} of admissible valuations. The mapping N : PRC → N maps p ∈ PRC

to the number N(p) of processes that participate in the algorithm. For each
process i, we assume 1 ≤ i ≤ N(p).

The algorithm in Figure 1 has three parameters: n, t, f ∈ Π, and π = 〈n, t, f〉.
The resilience condition is n > 5t ∧ t ≥ f . An admissible valuation p ∈ PRC is
〈6, 1, 1〉, as p[n] > 5p[t] ∧ p[t] ≥ p[f].

Rules R. The set R of rules defines how processes move from one location
to another. A rule r ∈ R is a tuple (from, to, ϕ,u), where from, to ∈ L are
locations, ϕ is a guard, and u is a |Γ |-dimensional update vector of values from
the set {0, 1}. The guard ϕ checks if the rule can be executed, and will be defined
below. The update vector u captures the increment of the shared variables.

For example, in Figure 1, executing the rule r1 = (I0, SR,>,u) moves a
process i from location I0 to location SR, by incrementing the value of ns(0).
That is, r1.u[ns(0)] = 1, and for every other shared variable g ∈ Γ , with g 6=
ns(0), we have r1.u[g] = 0. Observe that the guard of r1 is r1.ϕ = >, which
means that r1 can be executed whenever process i is in location I0.

Propositions. Let γ denote the |Γ |-dimensional shared variables vector, and δ
the |∆|-dimensional receive variables vector. To express guards and temporal
properties, we consider the following propositions:

– `-propositions, p(`), for ` ∈ L, (which will be used in Section 6),
– r-propositions, a · δ ≥ b · π + c, such that a ∈ Z|∆|,b ∈ Z|Π|, c ∈ Z,
– s-propositions, a · γ ≥ b · π + c, such that a ∈ Z|Γ |,b ∈ Z|Π|, c ∈ Z.

Guards. A guard ϕ is a Boolean combination of r-propositions and s-propositions.
We denote by Vars∆(ϕ) = {nri(m) ∈ ∆ | nri(m) occurs in ϕ} the set of receive
variables that occur in the guard ϕ. A guard ϕ is evaluated over tuples (d,g,p),
where d ∈ N|∆|,g ∈ N|Γ |,p ∈ PRC are valuations of the vectors δ of receive
variables, γ of shared variables, and π of parameters. We define the semantics
of r-propositions and s-propositions, the semantics of the Boolean connectives
is standard. An r-proposition holds in (d,g,p), i.e., (d,g,p) |= a · δ ≥ b ·π + c
iff (d,p) |= a · δ ≥ b · π + c iff a · d ≥ b · p + c. Similarly for s-propositions, we
have (d,g,p) |= a · γ ≥ b ·π+ c iff (g,p) |= a · γ ≥ b ·π+ c iff a · g ≥ b ·p + c.

The guard r4.ϕ of rule r4 in the TA in Figure 1 is a conjunction of two r-
propositions, as nri(0) > (n+ t)/2 is equivalent to 2nri(0) ≥ n+ t+ 1. We have
Vars∆(r4.ϕ) = {nri(0), nri(1)} and VarsΓ (r4.ϕ) = ∅.

Environment assumption Env. The environment assumption Env is a conjunction
of linear arithmetic constraints on the values of the receive, shared variables, and

6

parameters. It is used to faithfully model the assumptions imposed by the fault
model and the message communication. For example, for Byzantine faults,

Env ≡
∧
r∈R

Env(r.ϕ), for Env(r.ϕ) ≡
∧

M ′⊆M(r.ϕ)

∑
m∈M ′

nri(m) ≤
∑
m∈M ′

ns(m) + f

where M(r.ϕ) are the message types of the receive variables that occur in the
guard r.ϕ, i.e., m ∈ M(r.ϕ) iff nri(m) ∈ Vars∆(r.ϕ). The constraint Env(r.ϕ)
states that the number of received messages of types in M ′ ⊆M(r.ϕ), is bounded
by the number of sent messages of types in M ′ and the number f of faults.

4 Modeling Distributed Algorithms with TA

The definition of TA presented in Section 3 is very general. To faithfully model
the sending and receiving of messages in fault-tolerant distributed algorithms,
we introduce elementary TA, by restricting the locations and the guards.

We first define wait locations. A location ` ∈ L is a wait location iff (W1) there
exists exactly one r ∈ R with r = (`, `,>,0), and (W2) there exists at least one
r ∈ R with r = (`, `′, ϕ,u), with ` 6= `′, where r.ϕ 6= >. A process in a wait
location ` ∈ L uses the self-loop rule (W1) to stay in ` while it awaits to receive
enough messages, until some guard of a rule (W2) is satisfied. The process uses
the rules (W2) to move to a new location once the number of messages passes
some threshold. The self-loop rule is unguarded and updates no shared variables,
that is, its guard is > and its update vector is 0. The outgoing rules that are
not self-loops are guarded and can contain updates of shared variables.

In Figure 1, SR is a wait location, as it has a self-loop rule r3 = (SR, SR,>,0)
as well as three guarded outgoing rules, r4, r5, and r6, that are not self-loops.

Definition 1. A threshold automaton TA = (L, I,R, Γ,∆,Π,RC ,Env) is ele-
mentary iff r.from is a wait location for every r ∈ R, with r.ϕ 6= >.

We now define the two kinds of elementary TA: receive and send TA. To do
so, we introduce a receive guard, as a Boolean combination of r-propositions and
s-propositions, and a shared guard, as a Boolean combination of s-propositions.

Definition 2 (Receive TA). The elementary TA (L, I,R∆, Γ,∆,Π,RC ,Env∆)
is a receive TA (denoted by rcvTA) if r.ϕ is a receive guard, for r ∈ R∆.

Definition 3 (Send TA). The elementary TA (L, I,RΓ , Γ,∆,Π,RC ,EnvΓ) is
a send TA (denoted by sndTA) if ∆ = ∅, and r.ϕ is a shared guard, for r ∈ RΓ .
We omit ∆ from the signature, and define sndTA = (L, I,RΓ , Γ,Π,RC ,EnvΓ).

For example, the TA in Figure 1 is a rcvTA. In the remainder of this section,
we define the semantics of the parallel composition of N(p) copies of receive and
send TA as an asynchronous transition system and counter system, respectively.

7

4.1 Asynchronous Transition System ATS(p)

Definition 4 (ATS(p)). Given a rcvTA and p ∈ PRC , the triple ATS(p) =
〈S(p), S0(p), T (p)〉 is an asynchronous transition system, where S(p), S0(p) are
the set of states and initial states, and T (p) is the transition relation.

A state s ∈ S(p) is a tuple s = 〈`,g,nr1, . . . ,nrN(p),p〉, where ` ∈ LN(p)

is a vector of locations, such that `[i] ∈ L, for 1 ≤ i ≤ N(p), is the current
location of process i, the vector g ∈ N|Γ | is a valuation of the shared variables
vector γ, and the vector nri ∈ N|M |, is a valuation of the receive variables
vector δ for process i. Each state s ∈ S(p) satisfies the constraints imposed by
the environment assumption Env∆. A state s0 is initial, i.e., s0 ∈ S0(p) ⊆ S(p),
if ` ∈ IN(p), and g,nr1, . . . ,nrN(p) are initialized to 0.

A receive guard r.ϕ, for r ∈ R∆, is evaluated over tuples (s, i), where s ∈ S(p)
and 1 ≤ i ≤ N(p). We define (s, i) |= r.ϕ iff (s.nri, s.g, s.p) |= r.ϕ.

Given two states, s, s′ ∈ S(p), we say that (s, s′) ∈ T (p), if there exists a
process i, for 1 ≤ i ≤ N(p), and a rule r ∈ R∆ such that: (T1) s.`[i] = r.from and
(s, i) |= r.ϕ, (T2) s′.g = s.g + r.u, (T3) s′.`[i] = r.to, (T4) s.nri[m] ≤ s′.nri[m],
for m ∈ M , and (T5) for all j such that 1 ≤ j ≤ N(p) and j 6= i, we have
s′.`[j] = s.`[j] and s′.nrj [m] = s.nrj [m], for m ∈ M . A rule r ∈ R∆ is enabled
in a state s ∈ S(p) if there exists a process i with 1 ≤ i ≤ N(p) such that (T1)
holds. A state s′ ∈ S(p) is the result of applying r to s if there exists a process
i, with 1 ≤ i ≤ N(p), such that r is enabled in s and if s′ satisfies (T2) to (T5).

A path in ATS(p) is the finite sequence {si}ki=0 of states, such that (si, si+1) ∈
T (p), for 0 ≤ i < k. A path {si}ki=0 is an execution if s0 ∈ S0(p).

4.2 Counter System CS(p)

Definition 5 (CS(p) [13]). Given a sndTA and p ∈ PRC , the triple CS(p) =
〈Σ(p), I(p), R(p)〉 is a counter system, where Σ(p), I(p) are the sets of config-
urations and initial configurations, and R(p) is the transition relation.

A configuration σ ∈ Σ(p) is the triple σ = 〈κ,g,p〉, where the vector κ ∈
N|L| is a vector of counters, s.t. σ.κ[`], for ` ∈ L, counts how many processes are
in location `, and the vector g ∈ N|Γ | is the valuation of the shared variables
vector γ. Every configuration σ ∈ Σ(p) satisfies the constraint

∑
`∈L σ.κ[`] =

N(p) and the environment assumption EnvΓ . A configuration σ0 is initial, i.e.,
σ0 ∈ I(p) ⊆ Σ(p), if σ0.κ[`] = 0, for ` ∈ L \ I, and σ0.g = 0.

A shared guard r.ϕ, for r ∈ RΓ , is evaluated over σ ∈ Σ(p) as follows. As r.ϕ
is a Boolean combination of s-propositions, we have σ |= r.ϕ iff (σ.g, σ.p) |= r.ϕ.

Given σ, σ′ ∈ Σ(p), we say that (σ, σ′) ∈ R(p) if there exists a rule r ∈
RΓ such that: (R1) σ.κ[r.from] ≥ 1 and σ |= r.ϕ, (R2) σ′.g = σ.g + r.u,
(R3) σ′.κ[r.from] = σ.κ[r.from] − 1 and σ′.κ[r.to] = σ.κ[r.to] + 1, and (R4) for
all ` ∈ L \ {r.from, r.to}, we have σ′.κ[`] = σ.κ[`]. The rule r ∈ RΓ is en-
abled in σ ∈ Σ(p) if it satisfies condition (R1). We call σ′ ∈ Σ(p) the result of
applying r to σ, if r is enabled in σ and σ′ satisfies the conditions (R2) to (R4).

The path and execution in CS(p) are defined analogously as for ATS(p).

8

5 Abstracting rcvTA to sndTA

We perform the abstraction from rcvTA to sndTA in two steps. First, we add the
environment assumption Env∆ as a conjunct to every receive guard occurring on
the rules of the rcvTA. Second, we eliminate the receive variables to obtain the
shared guards and environment assumption EnvΓ of sndTA.

Let rcvTA = (L, I,R∆, Γ,∆,Π,RC ,Env∆) be a receive TA and let rcvTA′ =
(L, I,R′∆, Γ,∆,Π,RC ,Env∆) be the receive TA obtained by adding the envi-
ronment assumption Env∆ as a conjunct to every receive guard r.ϕ, for r ∈ R∆.

Definition 6. Given a rule r ∈ R∆, its corresponding rule in rcvTA′ is the rule
r′ ∈ R′∆, such that r′.from = r.from, r′.to = r.to, r′.u = r.u, and

r′.ϕ = addEnv∆(r.ϕ) , where addEnv∆(r.ϕ) =

®
> if r.ϕ = >
r.ϕ ∧ Env∆ otherwise

Proposition 1. For every rule r ∈ R∆, state s ∈ S(p), and process i, for
1 ≤ i ≤ N(p), we have (s, i) |= r.ϕ iff (s, i) |= addEnv∆(r.ϕ).

Proposition 1 follows from Definitions 4 and 6. As a result of it, composing
N(p) copies of rcvTA and N(p) copies of rcvTA′ results in the same ATS(p).

Given the rcvTA′ = (L, I,R′∆, Γ,∆,Π,RC ,Env∆), obtained from rcvTA by
Definition 6, we now construct a sndTA = (L, I,RΓ , Γ,Π,RC ,EnvΓ) whose
locations, shared variables, and parameters are the same as in rcvTA and rcvTA′,
and whose rulesRΓ and the environment assumption EnvΓ are defined as follows.

Definition 7. Given a rule r′ ∈ R′∆, its corresponding rule in sndTA is the rule
r̂ ∈ RΓ , such that r̂.from = r′.from, r̂.to = r′.to, r̂.u = r′.u, and

r̂.ϕ = eliminate∆(r′.ϕ), with eliminate∆(r′.ϕ) =

®
> if r′.ϕ = >
QE(∃δ r′.ϕ) otherwise

where δ is the |∆|-dimensional vector of receive variables, and QE is a quantifier
elimination procedure for linear integer arithmetic.

The environment assumption EnvΓ of sndTA is the formula eliminate∆(Env∆).

To obtain the shared guards of a sndTA, we apply quantifier elimination to
eliminate the existentially quantified variables from the formula ∃δ r.ϕ ∧ Env∆,
where r.ϕ is a receive guard. The result is a quantifier-free formula over the
shared variables, which is logically equivalent to ∃δ r.ϕ ∧ Env∆. We obtain the
environment assumption EnvΓ of a sndTA in a similar way. The following propo-
sition is a consequence of Definition 7 and quantifier elimination.

Proposition 2. For every rule r′ ∈ R′∆ and state s ∈ S(p), if there exists a
process i, with 1 ≤ i ≤ N(p), such that (s, i) |= r′.ϕ, then s |= eliminate∆(r′.ϕ).

The converse of Proposition 2 does not hold in general, i.e., if r.ϕ is a re-
ceive guard, s |= eliminate∆(r′.ϕ) does not imply (s, i) |= r.ϕ, for some 1 ≤
i ≤ N(p). However, in this case, by quantifier elimination, we have that s |=
eliminate∆(r′.ϕ) implies s |= ∃δ r′.ϕ.

9

6 Soundness

The construction of sndTA defined in Section 5 is sound. Given a rcvTA and its
corresponding sndTA, we show that there exists a simulation relation between
the system ATS(p) = 〈S(p), S0(p), T (p)〉, induced by rcvTA, and the counter
system CS(p) = 〈Σ(p), I(p), R(p)〉, induced by sndTA. From this, we conclude
that every ACTL∗ formula over a set AP of atomic propositions that holds in
CS(p) also holds in ATS(p). In this paper, the set AP of atomic propositions
contains `-propositions and s-propositions (cf. Section 3).

Evaluating AP. We define two labeling functions: λS(p) and λΣ(p). The function
λS(p) : S(p) → 2AP assigns to a state s ∈ S(p) the set of atomic propositions
from AP that hold in s. The function λΣ(p) : Σ(p)→ 2AP is defined analogously.
We define the semantics of `-propositions: p(`) holds in s ∈ S(p), i.e., s |= p(`),
iff there exists a process i, with 1 ≤ i ≤ N(p), such that s.`[i] = `. The `-
proposition p(`) holds in σ ∈ Σ(p), that is, σ |= p(`) iff σ.κ[`] ≥ 1.

Simulation. A binary relation R ⊆ S(p)×Σ(p) is a simulation relation [1] if:

1. for every s0 ∈ S0(p), there exists σ0 ∈ I(p) such that (s0, σ0) ∈ R,
2. for every (s, σ) ∈ R it holds that:

(a) λS(p)(s) = λΣ(p)(σ),
(b) for every state s′ ∈ S(p) such that (s, s′) ∈ T (p), there exists a configu-

ration σ′ ∈ Σ(p) such that (σ, σ′) ∈ R(p) and (s′, σ′) ∈ R.

We introduce an abstraction mapping from the set S(p) of states of ATS(p) to
the set Σ(p) of configurations of CS(p).

Definition 8. The abstraction mapping αp : S(p) → Σ(p) maps s ∈ S(p) to
σ ∈ Σ(p), s.t. σ.κ[`] = |{i | s.`[i] = `}|, for ` ∈ L, σ.g = s.g, and σ.p = s.p.

The main result of this section is stated in the theorem below. It follows
from: (i) a state s in ATS(p) and its abstraction σ = αp(s) in CS(p) satisfy the
same atomic propositions, a consequence of the semantics of atomic propositions,
and (ii) if a rule r ∈ R∆ is enabled in s, then the rule r̂ ∈ RΓ , obtained by
Definitions 6 and 7, is enabled in σ, a consequence of Propositions 1 and 2.

Theorem 1. The binary relation R = {(s, σ) | s ∈ S(p), σ ∈ Σ(p), σ = αp(s)}
is a simulation relation.

7 Sufficient Condition for Completeness

We introduce the class of common rcvTA, that formalizes assumptions often im-
plicitly assumed by distributed algorithms designers. In a common rcvTA, for
every two wait locations ` and `′, where `′ is reachable from `, either: (1) a
process waits for messages of different types in ` and `′, or (2) a process waits
for more messages of the same type in `′ than in `. Below, we give one possi-
ble formalization of common rcvTA, which allows us to establish stutter-trace
inclusion [1] between the counter system CS(p) and the system ATS(p).

10

Theorem 2. Let rcvTA be common, and sndTA its corresponding send TA. For
every execution of CS(p) induced by sndTA, there exists a stutter-equivalent ex-
ecution of ATS(p) induced by the common rcvTA.

From Theorem 2, every LTL-X formula satisfied in ATS(p) is also satisfied in
CS(p). As LTL-X is a fragment of ACTL∗, a consequence of Theorems 1 and 2 is:

Corollary 1. Let rcvTA be common, and sndTA its corresponding send TA. Let
φ be an LTL-X formula over the set AP of atomic propositions. For a given
p ∈ PRC , we have ATS(p) |= φ iff CS(p) |= φ.

We define the properties of common rcvTA, that allow us to show Theorem 2.

Definition 9. A guard ϕ is monotonic iff for every d,d′ ∈ N|∆|, g,g′ ∈ N|Γ |,
p ∈ PRC , (d,g,p) |= ϕ, d[m] ≤ d′[m], for m ∈M , and g[g] ≤ g′[g], for g ∈ Γ ,
implies (d′,g′,p) |= ϕ.

The monotonicity of the guards captures constraints imposed by the message
communication and distributed computation. It states that a monotonic guard
changes its truth value at most once as the processes update the values of the
receive and shared variables.

Definition 10. Let P∆ = {D1, . . . , Dk} be a partition over the set ∆ of receive
variables. An environment assumption Env∆ is:

– P∆-independent iff Env∆ is of the form Env∆ =
∧
D∈P∆

ψD, where ψD is a
subformula of Env∆, such that Vars∆(ψD) = D.

– D-closed under joins, for D ∈ P∆, iff for every d,d′ ∈ N|∆|, g ∈ N|Γ |, and
p ∈ PRC , such that d[m] = d′[m], for nri(m) ∈ ∆ \D, we have (d,g,p) |=
Env∆ and (d′,g,p) |= Env∆ implies (max{d,d′},g,p) |= Env∆.

The constraints of a P∆-independent environment assumption Env∆ are ex-
pressions over disjoint sets of variables. Under P∆-independence, for an environ-
ment assumption Env∆ which is D-closed under joins, for D ∈ P∆, there exists
a maximal valuation of the variables in D such that Env∆ is satisfied.

For Byzantine faults, Env∆ is D-closed under joins iff |D| = 1. To show a
counterexample where |D| > 1, consider some D = {nri(0), nri(1)} of size 2,
and a receive guard ϕ = nri(0) + nri(1) ≥ n − t. Then, Env∆ has three con-
juncts: (i) nri(0) ≤ ns(0) + f , (ii) nri(1) ≤ ns(1) + f , and (iii) nri(0) + nri(1) ≤
ns(0) + ns(1) + f . Consider f = ns(0) = ns(1) = 1, nri(0) = 2, nri(1) = 1, and
nri(0) = 1, nri(1) = 2. Taking the maximum of these two valuations violates the
constraint (iii). For crash faults, Env∆ is D-closed under joins for all D ∈ P∆.

The rule r is a predecessor of rule r′, for r, r′ ∈ R∆, iff r.ϕ 6= >, r′.ϕ 6= >,
and r′.from is reachable from r.from by a path that starts with r.

Definition 11. A rcvTA = (L, I,R∆, Γ,∆,Π,RC ,Env∆) is common iff

– there exists a partition P∆, where Vars∆(r.ϕ) ∈ P∆, for r ∈ R∆,
– Env∆ is P∆-independent,

11

– for every two rules r, r′ ∈ R∆, such that r is a predecessor of r′ either
1. Vars∆(r.ϕ) ∩ Vars∆(r′.ϕ) = ∅, or
2. Env∆ is Vars∆(r′.ϕ)-closed under joins and the guard r′.ϕ is monotonic.

The rcvTA of all our benchmarks are common. They are either: Byzan-
tine, with non-overlapping variables on the guards outgoing of wait locations
or with partition elements of size 1; or crash-faulty. Consider Figure 1. We have
P∆ = {Vars∆(rSR.ϕ),Vars∆(rSP .ϕ)}, where Vars∆(rSR.ϕ) = {nri(0), nri(1)},
and Vars∆(rSP .ϕ) = {nri(2), nri(3), nri(4)}. For Byzantine faults and the par-
tition P∆, we have Env∆ is P∆-independent. For rSP ∈ {r8, . . . , r12} and its
predecessors rSR ∈ {r4, . . . , r6} SR, we have Vars∆(rSP) ∩ Vars∆(rSR) = ∅.

Stutter-equivalent executions. Let rcvTA be common, and let sndTA be its cor-
responding send TA. Given an infinite execution execCS = {σj}j∈N in CS(p), in-
duced by sndTA, we construct an infinite execution execATS = {si}i∈N in ATS(p),
induced by the common rcvTA, which is stutter-equivalent to execCS as follows:

1. constructing the initial state s0 of execATS, and
2. for every transition (σ, σ′) in execCS, extending the execution execATS either

by a single transition or by a path consisting of two transitions.

The construction satisfies two invariants: (I1) for σ ∈ Σ(p), which is the origin
of the transition (σ, σ′) in step 2, and s ∈ S(p) at the tail of execATS before
executing step 2, it holds that σ = αp(s), and (I2) for every i, with 1 ≤ i ≤ N(p),
and s ∈ S(p) at the tail of execATS, we have s.nri[m] = 0, for m ∈M , s.t. nri(m)
occurs on guards of rules that process i has not applied before reaching s.`[i].

Constructing the initial state. Let σ0 ∈ I(p) be the initial configuration of
execCS. We construct a state s0 ∈ S(p) such that σ0 = αp(s0), where s0.nri[m] =
0, for m ∈M and 1 ≤ i ≤ N(p).

Proposition 3. Given σ0 ∈ I(p), the state s0 ∈ S(p), such that σ0 = αp(s0)
and s0.nri[m] = 0, for m ∈M and 1 ≤ i ≤ N(p), is an initial state in ATS(p).

Extending the execution execATS. The construction of execATS proceeds itera-
tively: given a transition (σ, σ′) in execCS, the execution execATS is extended by
a single transition or a path consisting of two transitions. Let r ∈ R∆ denote the
rule in rcvTA, which was used to construct the rule r̂ ∈ RΓ , that was applied in
the transition (σ, σ′). Let s be the state at the tail of execATS. By the invariant
of the construction, αp(s) = σ. There are two cases:

1. r is enabled in s – execATS is extended by a single transition (s, s′),
2. r is not enabled in s – execATS is extended by two transitions: (s, s′), (s′, s′′).

When r is enabled in s, the construction picks such a process i, and applies the
rule r to the state s, such that the receive variables of process i are not updated.
The result is the state s′, such that: (A1) s′.`[i] = r.to and s′.g = s.g + r.u,
(A2) s′.nri[m] = s.nri[m], for m ∈ M , that is, the process i does update its
receive variables, (A3) for all j such that 1 ≤ j ≤ N(p), and i 6= j, we have
s′.`[j] = s.`[j] and s′.nrj [m] = s.nrj [m], for m ∈M .

12

Proposition 4. Suppose r is enabled in s. Let s′ ∈ S(p) be obtained by applying
(A1)-(A3). Then, (s, s′) ∈ T (p) is a transition in ATS(p).

In the case when r is not enabled in s, there is no process i, with 1 ≤ i ≤ N(p)
and s.`[i] = r.from, such that (s, i) |= r.ϕ. This can happen if r.ϕ is a receive
guard, i.e., ` = r.from is a wait location. By σ.κ[`] ≥ 1 and the invariant (I1),
there exists a process i in the wait location `. The construction extends execATS

with: one transition in which the receive variables of process i are updated to
values nr ∈ N|∆|, such that r.ϕ becomes enabled, and a second transition in
which process i applies the rule r, without updating its receive variables.

By quantifier elimination and Definition 11, we find values nr that sat-
isfy r.ϕ, where only the values of variables in Vars∆(r.ϕ) get updated, i.e.,
where nr[m] = s.nri[m] for nri(m) ∈ ∆ \ Vars∆(r.ϕ). For the values nr[m], for
nri(m) ∈ Vars∆(r.ϕ), we take the maximum of s.nri[m] and the values for nri(m)
in some arbitrary valuation that satisfies r.ϕ. Thus, process i can apply the self-
loop rule r′ = (`, `,>,0) to update its receive variables to nr. The result is a state
s′, such that: (B1) s′.`[i] = s.`[i] and s′.g = s.g, (B2) s′.nri[m] = nr[m], for
m ∈M , (B3) for all j such that 1 ≤ j ≤ N(p), and i 6= j, we have s′.`[j] = s.`[j]
and s′.nrj [m] = s.nrj [m], for m ∈ M . The rule r is enabled in s′, as s′.`[i] = `
and (s′, i) |= r.ϕ, and is applied to s′, using (A1)-(A3), resulting in the state s′′.

Proposition 5. Suppose r is not enabled in s. Let s′ ∈ S(p) be obtained by
applying (B1)-(B3). Then, (s, s′) ∈ T (p) is a transition in ATS(p).

We sketch how to prove Proposition 5 using the assumptions from Defi-
nition 11. If there exists a predecessor rp of the rule r, such that Vars∆(rp.ϕ)
and Vars∆(r.ϕ) overlap, the monotonicity of r.ϕ ensures that (nr, s.g, s.p) |= r.ϕ,
which implies (s′, i) |= r.ϕ. The P∆-independence and Vars∆(r.ϕ)-closure under
joins of Env∆ allows us to reason only about the variables from Vars∆(r.ϕ) to
show that (nr, s.g, s.p) |= Env∆, from which s′ |= Env∆ follows. Otherwise, i.e.,
if Vars∆(rp.ϕ) and Vars∆(r.ϕ) do not overlap, (s′, i) |= r.ϕ and s′ |= Env∆ follow
from the P∆-independence of Env∆ and the invariant (I2).

Stutter-equivalence. For a given common rcvTA and its corresponding sndTA,
the construction produces an infinite execution execATS in ATS(p), given an
infinite execution execCS in CS(p). Propositions 3, 4 and 5 ensure that execATS

is an execution in ATS(p). The invariants (I1) and (I2) are preserved during the
construction. When r is enabled in s, it is easy to check that αp(s′) = σ′, where
s′ is obtained by (A1)-(A3), and no receive variables are updated. When r is
not enabled in s, we have αp(s′) = σ, and αp(s′′) = σ′ where s′ is obtained
by (B1)-(B3), and s′′ by (A1)-(A3). Here, only the receive variables of process i
occurring on the rule r applied in s′ are updated. Stutter-equivalence follows
from (I1) and because s and σ satisfy the same atomic propositions.

8 Experimental Evaluation

In our experimental evaluation, we: (1) encoded several distributed algorithms
from the literature as rcvTA, (2) implemented the method from Section 5 in a

13

Table 1. The algorithms we encoded as rcvTA and the model checking results. The
experiments were run on a machine with 2,8 GHz Quad-Core Intel Core i7 and 16GB.
We used Z3 v4.8.7 and ByMC v2.4.2. The columns stand for: QE – time to produce a
sndTA, given a rcvTA as input; |Φ| – number of properties ByMC checked; sndTA |= φ
(TA |= φ) – time ByMC took to verify the properties of the automatically generated
sndTA (manually encoded TA); ⇒ – if all, some, or none of the sndTA guards imply
the manual TA guards; +L, F – guard implications after adding lemmas or fixes.

Algorithm Reference Faults QE |Φ| sndTA |= φ TA |= φ ⇒ +L, F

ABA [7, Fig. 3] Byzantine 0.43s 3 0.94s 0.8s all –
Ben-Or-Byz [2, Prot. B] Byzantine 1.04s 4 36.4s 0.64s some all
Ben-Or-clean [2, Prot. A] clean crash 0.78s 4 2m8s 1.03s some all
Ben-Or-crash [2, Prot. A] crash 1.31s 4 4×M.O. 23h, 2×M.O. some all
Bosco [18, Alg. 1] Byzantine 2.01s 5 30h5m 9m14s some some
CC-clean [15, Fig. 1] clean crash 0.65s 3 0.95s 0.67s all –
CC-crash [15, Fig. 1] crash 0.33s 3 1h59m 40.8s all –
FRB [8, Fig. 4] crash 0.14s 3 3.66s 0.97s none all
RS-Bosco [18, Alg. 2] Byzantine 9.51s 5 – – some some
STRB [19, Fig. 2] Byzantine 0.31s 3 0.97s 0.75s all –

prototype that produces the corresponding sndTA, (3) compared the output to
the existing manual encodings from the benchmark repository [3], and (4) verified
the properties of the sndTA using the tool ByMC [14].

Encoding rcvTA. To encode distributed algorithms as rcvTA, we extended the TA
format defined by ByMC with declarations of receive variables and environment
constraints. For each of our benchmarks (cf. Table 1), there already exists a
manually produced TA. For some crash-tolerant benchmarks, we also encoded a
“clean crash” variant, where the crashed processes do not send messages.

Quantifier Elimination. We implemented a script that parses the input rcvTA,
and creates a sndTA according to the abstraction from Section 5, whose rules
have shared guards, obtained by applying Z3 [10] tactics for quantifier elimina-
tion [5,6], to formulas of the form ∃δ r.ϕ∧Env∆, where r.ϕ is a receive guard. For
all our benchmarks, the sndTA is generated within seconds, as shown in Table 1.

Analyzing the sndTA. We used Z3 to check if the guards for the automatically
generated sndTA imply the guards of the manually encoded TA from [3]. This
check allowed us to either verify that the earlier, manually encoded TA faithfully
model the benchmark algorithms, or detect discrepancies, which we investigated
further. Due to our completeness result (cf. Section 7), our technique produces
the strongest possible guards. Hence, we expected implication for all the bench-
marks. This is indeed the case for ABA, CC-*, and STRB. To our surprise, the
implication did not hold for all the guards of the remaining benchmarks.

For Ben-Or-crash and FRB, we found flaws in the manual encodings. These
algorithms tolerate crash faults, where the number of messages sent by faulty
processes is stored in shared variables nsf (m), and the environment assumption

14

has constraints of the form nri(m) ≤ ns(m) + nsf (m). We identified that the
variables nsf (m) did not occur in the manual guards, i.e., it was assumed that
nri(m) ≤ ns(m) (this encodes clean crashes). We fixed the manual guards by
adding the variables nsf (m), which made the benchmark Ben-Or-crash harder to
check than previously reported in [4]: for the corrected TA, ByMC checked two
properties in a day and ran out of memory for the other two (and for all four
properties when checking the sndTA). By adding nsf (m) to the manual guards
of FRB we verified that the automatically generated guards are indeed stronger.

For all the Ben-Or-* benchmarks, we had to add lemmas to the environment
assumption Env∆ in order to verify that the automatically generated guards
imply the manual guards. The key finding is that these lemmas were implicitly
used in the manual encoding of the benchmarks in [4]. For instance, to get guards
for r8, . . . , r12 in Figure 1 that imply the manual guards, we added the lemma
ns(2) = 0 ∨ ns(3) = 0 to Env∆. To ensure soundness, it suffices to check (with
Z3) that the rules which increment ns(2) or ns(3) cannot both be enabled.

For the most complicated benchmarks, Bosco and RS-Bosco, we could not find
the right lemmas which ensure that all automatically generated guards imply all
manual guards. Further, after inspecting the manual guards for several hours, we
were not able to establish if those which are not implied are indeed wrong. Still,
we successfully verified the properties of sndTA for Bosco with ByMC. Checking
the manual TA for RS-Bosco requires running ByMC on an MPI cluster, to which
we currently have no access. Hence, we could not verify RS-Bosco.

Model Checking with ByMC. We verified the properties of eight out of ten sndTA
that our script produced. We ran ByMC with both the automatically generated
sndTA and the already existing manual TA as input (the results are in Table 1).
The timeout for ByMC was set to 24 hours for each property that we checked.

Quantifier elimination for ∃δ r.ϕ ∧ Env∆ in Presburger arithmetic may pro-
duce a quantifier-free formula which contains divisibility constraints; that are
not supported by ByMC. We encountered divisibility constraints in the auto-
matically generated guards for the benchmarks Bosco and RS-Bosco. To apply
ByMC, we extend our analysis by a phase that generates different versions of
the rcvTA according to the different evaluations of the divisibility constraints.
For example, if the divisibility constraint n%2 = 0 occurs on a guard, we create
two versions of the rcvTA: one where n is odd, and one where n is even. Based on
these two rcvTA, our script produces two sndTA, which we check with ByMC.

9 Conclusions

Our automated method helped in finding glitches in the existing encoding of sev-
eral benchmarks, which confirms our motivation of automatically constructing
threshold automata. In addition to the glitches discussed in Section 8, we found
the following problems in manual encodings: redundant rules (whose guards al-
ways evaluate to false), swapped guards (on rules r, r′, where the guard of r
should be r′.ϕ, and vice versa), and missing rules (that were simply omitted).
This indicates that there is a real benefit of producing guards automatically.

15

However, our experimental results show that ByMC performs worse on the
sndTA than on the manual TA. Since the automatically generated guards have
more s-propositions than the manual guards, the search space that ByMC ex-
plores is larger than for the manual TA. In this paper, we focus on soundness
and completeness of the translation rather than on efficiency. We suggest that a
simplification step which eliminates redundant s-propositions will lead to a per-
formance comparable to manual encodings, and we leave that for future work.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MITP (2008)
2. Ben-Or, M.: Another Advantage of Free Choice (Extended Abstract): Completely

Asynchronous Agreement Protocols. In: PODC (1983)
3. https://github.com/konnov/fault-tolerant-benchmarks
4. Bertrand, N., Konnov, I., Lazić, M., Widder, J.: Verification of Randomized Con-

sensus Algorithms Under Round-Rigid Adversaries. In: CONCUR (2019)
5. Bjørner, N.: Linear Quantifier Elimination as an Abstract Decision Procedure. In:

IJCAR (2010)
6. Bjørner, N., Janota, M.: Playing with Quantified Satisfaction. In: LPAR (2015)
7. Bracha, G., Toueg, S.: Asynchronous Consensus and Broadcast Protocols. J. ACM

32(4) (1985)
8. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed

Systems. J. ACM 43(2) (1996)
9. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine in-

telligence 7(91-99) (1972)
10. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS (2008)
11. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized Model

Checking of Fault-Tolerant Distributed Algorithms by Abstraction. In: FMCAD
(2013)

12. Konnov, I., Lazić, M., Veith, H., Widder, J.: A Short Counterexample Property
for Safety and Liveness Verification of Fault-Tolerant Distributed Algorithms. In:
POPL (2017)

13. Konnov, I., Veith, H., Widder, J.: On the Completeness of Bounded Model Check-
ing for Threshold-Based Distributed Algorithms: Reachability. Information and
Computation (2017)

14. Konnov, I., Widder, J.: ByMC: Byzantine Model Checker. In: ISOLA (2018)
15. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the

Condition-Based Approach to Solve Consensus. In: DSN (2003)
16. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I congres de Mathématiciens des Pays Slaves (1929)

17. Pugh, W.: A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM 35(8) (1992)

18. Song, Y.J., van Renesse, R.: Bosco: One-Step Byzantine Asynchronous Consensus.
In: DISC (2008)

19. Srikanth, T., Toueg, S.: Simulating Authenticated Broadcasts to Derive Simple
Fault-Tolerant Algorithms. Dist. Comp. (1987)

20. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying Safety of Synchronous
Fault-Tolerant Algorithms by Bounded Model Checking. In: TACAS (2019)

16

https://github.com/konnov/fault-tolerant-benchmarks

	Eliminating Message Counters in Threshold Automata

