Skip to main content

Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2020)

Abstract

Discrete-time Markov Chains (MCs) and Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their main associated quantitative objectives are hitting probabilities, discounted sum, and mean payoff. Although there are many techniques for computing these objectives in general MCs/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, particularly when treewidth is used as the parameter. This is in sharp contrast to qualitative objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield significant complexity improvements. In this work, we show that treewidth can also be used to obtain faster algorithms for the quantitative problems. For an MC with n states and m transitions, we show that each of the classical quantitative objectives can be computed in \(O((n+m)\cdot t^2)\) time, given a tree decomposition of the MC with width t. Our results also imply a bound of \(O(\kappa \cdot (n+m)\cdot t^2)\) for each objective on MDPs, where \(\kappa \) is the number of strategy-iteration refinements required for the given input and objective. Finally, we make an experimental evaluation of our new algorithms on low-treewidth MCs and MDPs obtained from the DaCapo benchmark suite. Our experiments show that on low-treewidth MCs and MDPs, our algorithms outperform existing well-established methods by one or more orders of magnitude.

A longer version is available at  [1]. The research was partly supported by Austrian Science Fund (FWF) Grant No. NFN S11407-N23 (RiSE/SHiNE), Vienna Science and Technology Fund (WWTF) Project ICT15-003, the Facebook PhD Fellowship Program, and DOC Fellowship No. 24956 of the Austrian Academy of Sciences (ÖAW).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The undiscounted sum objective is obtained by letting \(\lambda \,=\,1\) and our algorithms for discounted sum can be slightly modified to handle this case, too.

  2. 2.

    We only consider pure memoryless strategies because they are sufficient for our use-cases, i.e. there always exists an optimal strategy that is pure and memoryless  [29].

  3. 3.

    We always use \(\overline{C}\) to denote an MC that is obtained from C by removing one vertex. We apply this rule across our notation, e.g. \(\overline{\delta }\) is the respective transition function.

  4. 4.

    If \(\vert \mathfrak {T}\vert \ge 2\), we use the same technique as in the previous section to have only one target \(\mathfrak {t}\). To keep the tree decomposition valid, we add \(\mathfrak {t}\) to every bag.

References

  1. Asadi, A., et al.: Faster algorithms for quantitative analysis of Markov chains and Markov decision processes with small treewidth. arXiv preprint:2004.08828 (2020)

    Google Scholar 

  2. Ashok, P., Chatterjee, K., Daca, P., Křetínský, J., Meggendorfer, T.: Value iteration for long-run average reward in Markov decision processes. In: CAV (2017)

    Google Scholar 

  3. Bellman, R.: A Markovian decision process. J. Math. Mech. 6, 679–684 (1957)

    MathSciNet  MATH  Google Scholar 

  4. Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve linear programming system (2004)

    Google Scholar 

  5. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development and analysis. In: OOPSLA (2006)

    Google Scholar 

  6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  7. Chatterjee, K., Choudhary, B., Pavlogiannis, A.: Optimal Dyck reachability for data-dependence and alias analysis. In: POPL (2017)

    Google Scholar 

  8. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Pavlogiannis, A.: Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In: ESOP (2020)

    Google Scholar 

  9. Chatterjee, K., Goharshady, A.K., Pavlogiannis, A.: JTDec: a tool for tree decompositions in soot. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 59–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_4

    Chapter  Google Scholar 

  10. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_7

    Chapter  Google Scholar 

  11. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: CAV (2010)

    Google Scholar 

  12. Chatterjee, K., Łącki, J.: Faster algorithms for Markov decision processes with low treewidth. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 543–558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_36

    Chapter  Google Scholar 

  13. Chatterjee, K., et al.: Algorithms for algebraic path properties in concurrent systems of constant treewidth components. TOPLAS 40(3), 1–43 (2018)

    Article  Google Scholar 

  14. Chatterjee, K., Henzinger, M., Loitzenbauer, V., Oraee, S., Toman, V.: Symbolic algorithms for graphs and Markov decision processes with fairness objectives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 178–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_13

    Chapter  Google Scholar 

  15. Chatterjee, K., et al.: Efficient parameterized algorithms for data packing. In: POPL (2019)

    Google Scholar 

  16. Chatterjee, K., et al.: Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth. TOPLAS 41(4), p. 23 (2019)

    Google Scholar 

  17. Chatterjee, K., et al.: The treewidth of smart contracts. In: SAC (2019)

    Google Scholar 

  18. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21

    Chapter  MATH  Google Scholar 

  19. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  20. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_46

    Chapter  Google Scholar 

  21. Feinberg, E.A.: Handbook of Markov Decision Processes. Springer, New York (2012)

    Google Scholar 

  22. Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: local vs. global. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 489–503. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_34

    Chapter  Google Scholar 

  23. Fomin, F.V., et al.: Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. TALG 14(3), 1–45 (2018)

    Article  MathSciNet  Google Scholar 

  24. Goharshady, A.K., Mohammadi, F.: An efficient algorithm for computing network reliability in small treewidth. Reliab. Eng. Syst. Saf. 193, 106665 (2020)

    Article  Google Scholar 

  25. Gurobi Optimization, L.: Gurobi optimizer (2019). http://www.gurobi.com

  26. Gustedt, J., et al.: The treewidth of Java programs. In: ALENEX (2002)

    Google Scholar 

  27. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_56

    Chapter  Google Scholar 

  28. Howard, R.A.: Dynamic programming and Markov processes (1960)

    Google Scholar 

  29. Křetínský, J., Meggendorfer, T.: Efficient strategy iteration for mean payoff in Markov decision processes. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 380–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_25

    Chapter  Google Scholar 

  30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  31. MATLAB: The MathWorks Inc. (2018)

    Google Scholar 

  32. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  33. Obdržálek, J.: Fast Mu-Calculus model checking when tree-width is bounded. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_7

    Chapter  Google Scholar 

  34. Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  35. Quatmann, T., Katoen, J.-P.: Sound Value Iteration. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_37

    Chapter  Google Scholar 

  36. Robertson, N., Seymour, P.D.: Graph minors. iii. planar tree-width. J. Comb. Theor. Series B 36(1), 49–64 (1984)

    Article  MathSciNet  Google Scholar 

  37. Thorup, M.: All structured programs have small tree width and good register allocation. Inf. Comput. 142(2), 159–181 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kafshdar Goharshady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asadi, A., Chatterjee, K., Goharshady, A.K., Mohammadi, K., Pavlogiannis, A. (2020). Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth. In: Hung, D.V., Sokolsky, O. (eds) Automated Technology for Verification and Analysis. ATVA 2020. Lecture Notes in Computer Science(), vol 12302. Springer, Cham. https://doi.org/10.1007/978-3-030-59152-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59152-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59151-9

  • Online ISBN: 978-3-030-59152-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics