Skip to main content

Robust Controller Synthesis for Duration Calculus

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12302))

  • 959 Accesses

Abstract

In automatic control synthesis, we may need to handle specifications with timing constraints and control such that the system meets the specification as much as possible, which is called robust control. In this paper, we present a method for open loop robust controller synthesis from duration calculus (DC) specifications. For robust synthesis, we propose an approach to evaluate the robustness of DC specifications on a given run of a system. We leverage a CEGIS like method for synthesizing robust control signals. In our method, the DC specifications and the system under control are encoded into mixed integer linear problems, and the optimization problem is solved to yield a control signal. We have implemented a tool (ControlDC) based on the method and applied it on a set of benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Traditionally denoted as \(\frown \).

  2. 2.

    Traditionally denoted as \(\frown \).

References

  1. Pinzon, L.E., Hanisch, H.-M., Jafari, M.A., Boucher, T.: A comparative study of synthesis methods for discrete event controllers. Formal Methods Syst. Des. 15(2), 123–167 (1999). https://doi.org/10.1023/A:1008740917111

    Article  Google Scholar 

  2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

    Article  Google Scholar 

  4. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  5. Rungger, M., Mazo Jr, M., Tabuada, P.: Specification-guided controller synthesis for linear systems and safe linear-time temporal logic. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 333–342. ACM (2013)

    Google Scholar 

  6. Dimitrova, R., Ghasemi, M., Topcu, U.: Reactive synthesis with maximum realizability of linear temporal logic specifications. Acta Inf. 57(1), 107–135 (2020). https://doi.org/10.1007/s00236-019-00348-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for probabilistic systems (extended abstract). In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 493–506. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3_38

    Chapter  Google Scholar 

  8. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  Google Scholar 

  9. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis from signal temporal logic specifications. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 239–248. ACM (2015)

    Google Scholar 

  10. Chaochen, Z., Hansen, M.R.: Duration Calculus - A Formal Approach to Real-Time Systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-06784-0

    Book  MATH  Google Scholar 

  11. Wakankar, A., Pandya, P.K., Matteplackel, R.M.: DCSYNTH: guided reactive synthesis with soft requirements. In: Verified Software. Theories, Tools, and Experiments - 11th International Conference, VSTTE 2019, New York City, NY, USA, 13–14 July 2019, Revised Selected Papers, pp. 124–142 (2019)

    Google Scholar 

  12. Pandya, P.K., Wakankar, A.: Logical specification and uniform synthesis of robust controllers. In: Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design, MEMOCODE 2019, La Jolla, CA, USA, 9–11 October 2019, pp. 15:1–15:11 (2019)

    Google Scholar 

  13. Pandya, P.K.: Specifying and deciding quantified discrete-time duration calculus formulae using DCVALIDS. In: Proceedings of RTTOOLS 2001 (Affiliated with CONCUR 2001) (2001)

    Google Scholar 

  14. Wolff, E.M., Topcu, U., Murray, R.M.: Optimization-based trajectory generation with linear temporal logic specifications. In: 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, 31 May–7 June 2014, pp. 5319–5325 (2014)

    Google Scholar 

  15. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Model predictive control with signal temporal logic specifications. In: 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, 15–17 December 2014, pp. 81–87 (2014)

    Google Scholar 

  16. Gurobi Optimization. Inc.: Gurobi optimizer reference manual (2014) (2015). http://www.gurobi.com

  17. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, 27–30 July 1996, pp. 278–292 (1996)

    Google Scholar 

  18. Pandya, P.K., Krishna, S.N., Loya, K.: On sampling abstraction of continuous time logic with durations. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 246–260. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_20

    Chapter  MATH  Google Scholar 

  19. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58, 117–148 (2003)

    Article  Google Scholar 

  20. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  22. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyani Dole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dole, K., Gupta, A., Krishna, S.N. (2020). Robust Controller Synthesis for Duration Calculus. In: Hung, D.V., Sokolsky, O. (eds) Automated Technology for Verification and Analysis. ATVA 2020. Lecture Notes in Computer Science(), vol 12302. Springer, Cham. https://doi.org/10.1007/978-3-030-59152-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59152-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59151-9

  • Online ISBN: 978-3-030-59152-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics