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Abstract. In this paper, we propose a framework for performing state space
exploration of closed loop control systems. Our approach involves approximat-
ing sensitivity and a newly introduced notion of inverse sensitivity by a neural
network. We show how the approximation of sensitivity and inverse sensitivity
can be used for computing estimates of the reachable set. We then outline algo-
rithms for performing state space exploration by generating trajectories that reach
a neighborhood. We demonstrate the effectiveness of our approach by applying it
not only to standard linear and nonlinear dynamical systems, but also to nonlinear
hybrid systems and also neural network based feedback control systems.
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1 Introduction

The decrease in the cost of embedded microcontrollers and integration of software into
many control processes has lead to the deployment of increasingly sophisticated control
algorithms in many safety critical scenarios. Additionally, the recent improvements in
software and hardware platforms for training and evaluation of neural networks have
made it easier to integrate them in embedded devices. This increased complexity of
software in control tasks makes testing and validation of the closed loop systems very
challenging.

Testing is the most commonly used technique for checking whether a system satis-
fies its specification. In a typical work flow, after designing the feedback function, the
control designer generates a few test cases for the closed loop system and checks if
they satisfy the specification. Given that the state space is continuous, finding the tra-
jectory that violates the specification is similar to searching for a needle in a haystack.
For example, consider a regulation application where the output of the control system
is stabilized to a set point s with the error threshold of δ. Therefore, the output should
remain in the interval [s − δ, s + δ]. If all the test cases satisfy the specification, the
control designer does not know the next test case input that results in a higher value of
error than observed in the test cases.

While the designer can encode the property as a temporal logic formula and use
off-the-shelf falsification tools, such an approach has some drawbacks. First, falsifica-
tion tools are geared towards finding a trajectory that violates the given specification,
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not necessarily to help the control designer in state space exploration. Second, if the
threshold of δ is increased, the results from the falsification analysis are no longer use-
ful. Finally, using falsification tools would require the specification to be given in a
temporal logic such as signal temporal logic or metric temporal logic. While such spec-
ification might be useful in the verification and deployment phase, they are sometimes
a hinderance during the design phase. What the control designer needs, is a tool that
helps her to systematically generate trajectories that result in various values of error
thresholds. Currently, there are no tools for performing state space exploration based
on the previous tests generated or based on the input given by the control designer.

In this paper, we present NeuralExplorer, a technique for performing state space
exploration of closed loop control systems using neural networks. After the control
designer generates a few test scenarios, she can use NeuralExplorer to generate test
case scenarios that reach a neighborhood. The artifact that helps us in this endeavor is
sensitivity. Informally, sensitivity of a closed loop system is the change in the trajectory
of the system as a result of perturbing the initial condition. In this paper, we also present
a backward time notion of sensitivity called inverse sensitivity. Given a sample set of
trajectories in the domain of interest, we train a neural network to learn the sensitivity
and the inverse sensitivity functions. This neural network is then used to generate a
trajectory (or trajectories) that reaches a destination (or a neighborhood around it).

Our framework has two primary advantages. First, since NeuralExplorer relies only
on the sample test cases, it does not require a model of the system and can be ap-
plied to a black-box systems. Second, since sensitivity is a fundamental property of the
closed loop system, approximating it using a neural network is generalizable to trajec-
tories that are beyond the test cases generated by the control designer. In evaluating our
framework, we were not only able to perform state space exploration for standard lin-
ear and nonlinear dynamical systems, but also for nonlinear hybrid systems and neural
network based feedback control systems. We believe that NeuralExplorer is useful for
generating corner cases and supplements some of the existing testing and reachable set
computation procedures.

2 Related Work

Reachability analysis is often employed for proving the safety specification of safety
critical control system [11,4]. Some of the recent works in this domain are SpaceEx [22],
Flow* [9], CORA [3] and HyLAA [7]. These techniques use a symbolic representation
for the reachable set of states. While these are useful for proving that the safety spec-
ification is satisfied, generating counterexamples using reachability analysis is still an
area of research [24,26].

For generating trajectories that violate a given safety specification, falsification tech-
niques are widely applied [19,15]. In these techniques, the required specification is
specified in a temporal logic such as Metric Temporal Logic (MTL) [31] or Signal
Temporal Logic (STL) [35,32]. Given a specification, falsification techniques generate
several sample trajectories and use various heuristics [38,2,43,48,12,23] for generat-
ing trajectories that violate the specification. Prominent tools in this domain include
S-Taliro [5] and Breach [13].
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Bridging falsification and reachability are simulation driven verification methods [14,16,28,20].
These methods compute an upper bound on the sensitivity of the trajectories and com-
pute an over-approximation of the reachable set using sample trajectories. While these
techniques bridge the gap between falsification and verification, they suffer from curse
of dimensionality. That is, the number of trajectories generated might increase expo-
nentially with the dimensions. C2E2 [17], and DryVR [21] are some of the well known
tools in this domain.

Given the rich history of application of neural networks in control [36,33,37] and
the recent advances in software and hardware platforms, neural networks are now being
deployed in various control tasks. As a result, many verification techniques are now
being developed for neural network based control systems [30,47,44,18]. Additionally,
techniques for verification of neural networks deployed in other domains have been
proposed [46,45,27].

In this paper, we use neural networks to approximate an underlying property of
sensitivity. We believe that this is a valid approach because recently, many neural net-
work based frameworks for learning the dynamics or their properties have been pro-
posed [39,40,34,42,8,41].

3 Preliminaries

We denote the elements of the state space as x to be elements in Rn. Vectors are denoted
as v. We denote the dynamics of the plant as

ẋ = f(x, u) (1)

Where x is the state space of the system that evolves in Rn and u is the input space
in Rm.

Definition 1 (Unique Trajectory Feedback Functions). A feedback function u =
g(x) is said to be unique trajectory feedback function if the closed loop system ẋ =
f(x, g(x)) is guaranteed existence and uniqueness of the solution for the initial value
problem for all initial points x0 ∈ Rn.

Notice that for a feedback function to give a unique trajectory feedback, it need
not be differentiable. From the sufficuent conditions of ODE solutions, it is sufficient if
g(x) is continuous and is lipschitz.

Definition 2 (Trajectories of Closed Loop System). Given a unique trajectory feed-
back function u = g(x), a trajectory of closed loop system ẋ = f(x, g(x)), denoted as
ξg(x0, t) (t ≥ 0), is the solution of the initial value problem of the differential equation
ẋ = f(x, g(x)) with initial condition x0. We often drop the feedback function g when it
is clear from the context.

We extend the notion of trajectory to include backward time trajectories as well.
Given t > 0, the backward time trajectory ξg(x0,−t) = x such that ξg(x, t) = x0. We
denote backward time trajectory as ξ−1(x0, t).

Given x0, x1 ∈ Rn and t > 0 such that ξ(x0, t) = x1, then ξ−1(x1, t) = x0. It is
trivial to observe that ξ(ξ−1(x0, t), t) = x0.
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Definition 3 (Sensitivity of Trajectories). Given an initial state x0, vector v, and time
t, the sensitivity of the trajectories, denoted as Φ(x0, v, t) is defined as.

Φ(x0, v, t) = ξ(x0 + v, t)− ξ(x0, t).

Informally, sensitivity is the vector difference between the trajectories starting from
x0 and x0 + v after time t. We extend the definition of sensitivity to backward time
trajectories as

Φ−1(x0, v, t) = ξ−1(x0 + v, t)− ξ−1(x0, t).

We call Φ−1(x0, v, t) as inverse sensitivity function. Informally, inverse sensitivity
function gives us the perturbation of the initial condition that is required to displace
the trajectory passing through x0 by v. Observe that ξ(ξ−1(x0, t) +Φ−1(x0, v, t), t) =
x0 + v.

For general nonlinear differential equations, analytic representation of the trajecto-
ries of the ODEs need not exist. If the closed loop system is a smooth function, then the
infinite series for the trajectories is given as

ξ(x0, t) = x0 + Łf (x0)t+ Ł2
f (x0)

t2

2!
+ Ł3

f (x0)
t3

3!
+ . . . . (2)

Where Łif is the ith order Lie-derivative over the field f(x, g(x)) at the state x0.
Hence, one can write the sensitivity function as

Φ(x0, v, t) = v + (Łf (x0 + v)− Łf (x0))t+ (Ł2
f (x0 + v)− Ł2

f (x0))
t2

2!
+ . . . . (3)

Φ−1(x0, v, t) is obtained by substituting −f for f in Equation 3. When the closed
loop dynamics is linear, i.e., ẋ = Ax, it is easy to observe that Φ(x0, v, t) = eAtv,
Φ−1(x0, v, t) = e−Atv where eAt (e−At) is the matrix exponential of the matrix At
(−At). Obseve that for linear systems, the inverse sensitivity function is independent of
the state x0.

For nonlinear dynamical systems, one can truncate the infinite series upto a specific
order and obtain an approximation. However, for hybrid systems that have state based
mode switches, or for feedback functions where the closed loop dynamics is not smooth
or is discontinuous, such an infinite series expansion is hard to compute. The central
idea in this paper is to approximate Φ and Φ−1 using a neural network and perform
state space exploration using such neural networks.

4 Neural Network Approximations of Sensitivity and Inverse
Sensitivity

Given a domain of operation D ⊆ Rn, one can generate a finite set of trajectories for
testing the system operation in D. Often, these trajectories are generated using numer-
ical ODE solvers which return trajectories sampled at a regular time step. For approxi-
mating sensitivity and inverse sensitivity, we generate a finite number of time bounded
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trajectories where the step size, time bound, and the number of trajectories are spec-
ified by the user. The trajectories can be generated either according to a probability
distribution specified by the user or from specific initial configurations provided by her.

Given a sampling of a trajectory at regular time interval with step size h, i.e.,
ξ(x0, 0), ξ(x0, h), ξ(x0, 2h), . . ., ξ(x0, kh), we make two observations. First, any prefix
or suffix of this sequence is also a trajectory, albeit, of a shorter duration. Hence, from
a given set of trajectories, one can generate more virtual trajectories that have shorter
duration. Second, given two trajectories (real or virtual) starting from initial states x1
and x2, (x1 6= x2), We have the two following observations.

Φ(x1, x2 − x1, t) = ξ(x2, t)− ξ(x1, t) (4)
Φ−1(ξ(x1, t), ξ(x2, t)− ξ(x1, t), t) = x2 − x1. (5)

Given an initial set of trajectories, we generate virtual trajectories and use Equa-
tions 4 and 5 for generating all tuples 〈x0, v, t, vsen〉 and 〈x0, v, t, visen〉 such that
vsen = Φ(x0, v, t) and visen = Φ−1(x0, v, t). This data is then used for training and
evaluation of the neural network to approximate the inverse sensitivity function. We
denote these networks as NN Φ and NN Φ−1 respectively.

4.1 Evaluation on Standard Benchmarks

For approximating the sensitivity and inverse sensitivity functions, we pick a stan-
dard set of benchmakrs consisting of nonlinear dynamical systems, hybrid systems,
and control systems with neural network feedback functions. Most of the benchmarks
are taken from standard hybrid systems benchmark suite [1,29,6]. The benchmarks
Brussellator, Lotka, Jetengine, Buckling, Vanderpol, Lacoperon,
Roesseler, Steam, Lorentz, and Coupled vanderpol are continuous non-
linear systems, where Lorentz and Roesseler are chaotic as well. SmoothHybrid-
-Oscillator and HybridOscillator are nonlinear hybrid systems. The re-
maining benchmarks Mountain Car and Quadrotor are selected from [30], where
the state feedback controller is given in the from of neural network.

For each benchmark, we generated a given number (N is typically 30 or 50) of
trajectories, where the step size for ODE solvers (s) and the time bound are provided by
the user. The data used for training the neural network is collected as described in 4. We
use 90% of the data for training and 10% for testing. We used the Python Multilayer
Perceptron implemented as Sequential model in Keras [10] library with Tensorflow
as the backend. The network has 8 layers with each layer having 512 neurons. The
optimizer used is stochastic gradient descent. The network is trained using Levenberg-
Marquardt backpropagation algorithm optimizing the mean absolute error loss function,
and the Nguyen-Widrow initialization.

The activation function used to train the network is relu for all benchmarks ex-
cept Mountain car for which sigmoid performs better because the NN controller is
sigmoid-based. Note that the choice of hyper-parameters such as number of layers and
neurons, the loss and activation functions is empirical, and is motivated by some prior
work [25]. We evaluate the network performance using root mean square error (MSE)
and mean relative error (MRE) metrics. The training and evaluation are performed on a
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system running Ubuntu 18.04 with a 2.20GHz Intel Core i7-8750H CPU with 12 cores
and 32 GB RAM. The network training time, MSE and MRE are given in Tables 1 and 2
respectively.

Benchmark Dims Step size Time bound NN Training MSE MRE
(sec) Time (min)

Brussellator 2 0.01 500 40.0 0.14 0.34
Buckling 2 0.01 500 25.0 2.38 0.18

Lotka 2 0.01 500 27.0 0.38 0.31
Jetengine 2 0.02 300 35.0 0.086 0.63

Continuous Vanderpol 2 0.01 500 75.50 0.15 0.29
Nonlinear Lacoperon 2 0.1 500 66.0 0.12 0.33
Dynamics Roesseler 3 0.02 500 42.0 0.58 0.087

Lorentz 3 0.01 500 22.0 1.08 0.11
Steam 3 0.01 500 35.0 0.34 0.07

C-Vanderpol 4 0.01 500 70.0 0.18 0.15
HybridOsc. 2 0.01 500 80.0 0.35 0.11

Hybrid/ SmoothOsc. 2 0.01 500 38.5 0.40 0.096
NN Systems Mountain Car 2 - 100 12.5 0.015 0.79

Quadrotor 6 0.01 120 40.0 0.064 0.20
Table 1: Learning senstivity function. The set of benchmarks includes nonlinear dy-
namical, hybrid and neural network based feedback control systems. Time bound is
number of steps for which the system simulation is computed.

Benchmark Dims Step size Time bound NN Training MSE MRE
(sec) Time (min)

Brussellator 2 0.01 500 67.0 1.01 0.29
Buckling 2 0.01 500 42.0 0.59 0.17

Lotka 2 0.01 500 40.0 0.50 0.13
Jetengine 2 0.01 300 34.0 1.002 0.26
Vanderpol 2 0.01 500 45.50 0.23 0.23

Continuous Lacoperon 2 0.2 500 110.0 1.8 0.46
Nonlinear Roesseler 3 0.02 500 115.0 0.44 0.07
Dynamics Lorentz 3 0.01 500 67.0 0.48 0.08

Steam 3 0.01 500 58.0 0.13 0.057
C-Vanderpol 4 0.01 500 75.0 0.34 0.16
HybridOsc. 2 0.01 1000 77.0 0.31 0.077

Hybrid/ SmoothOsc. 2 0.01 1000 77.5 0.23 0.063
NN Systems Mountain Car 2 - 100 10.0 0.005 0.70

Quadrotor 6 0.01 120 25.0 0.0011 0.16
Table 2: Learning inverse senstivity function. Parameters and performance of neural
network tasked with learning inverse sensitivity function.
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5 Space Space Exploration Using Neural Network Approximation

In this section, we present various applications in the domain of state space exploration
using the neural network approximations of sensitivity and inverse sensitivity. The goal
of state space exploration is to search for trajectories that satisfy or violate a given
specification. In this paper, we primarily concern ourselves with a safety specification,
that is, whether a specific trajectory reaches a set of states labelled as unsafe. In order
to search for such trajectories, we present various empirical techniques that use both
forward and inverse sensitivity.

5.1 Reaching a Specified Destination Using Inverse Sensitivity Approximation

In the course of state space exploration, after testing the behavior of the system for
a given set of test cases, the control designer might choose to explore the behavior
of a system that reaches a destination or approaches the boundary condition for safe
operation. Given a domain of operation D, we assume that the designer provides a
desired target state z (with an error threshold of ε) that is reached by a trajectory at time
t. Our goal is to generate a trajectory ξ such that ξ(t) visits a state in the ε neighborhood
of the target z.

Our approach for generating the target trajectory is as follows. First, we generate a
random trajectory ξ from the initial set Θ, and compute the difference vector of target
state z and ξ(t). We now use the neural network approximation of the inverse sensitivity
function and estimate the perturbtion required in the initial set such that the trajectory
after time t goes through z. Since the neural network can only approximate the inverse
sensitivity function, the trajectory after the perturbation need not visit ε neighborhood
of the destination. However, we can repeat the procedure until a threhold on the number
of iterations is reached or the ε threshold is satisfied. The pseudocode of this procedure,
denoted as reachTarget, is given in Algorithm 1.1

input : System simulator ξ, Time bound T , trained neural network NN Φ−1 ,
time instance t ≤ T , target state z ∈ D, iteration count I , initial set θ,
and threshold ε

output: State x ∈ θ, dr, da
∆
= ||ξ(x0, t)− z||2 such that da ≤ ε

1 x← xrandom ∈ θ; i← 1;
2 x0 ← ξ(x, t); da ← ||x− z||2;
3 dorig ← da; dr ← 1;
4 while (da > ε) & (i ≤ I) do
5 v ← x0 − z;
6 v−1 ← NN Φ−1(x0, v, t);
7 x← x+ v−1; x0 ← ξ(x, t);
8 da ← ||x0 − z||2; i← i+ 1;
9 end

10 dr ← da
dorig

;
11 return (x, dr, da);

Algorithm 1.1: reachTarget. Finding an initial state from which the simulation
goes within ε-neighborhood of destination z at time t.
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We initialize the variables in line 3. ξ(x, .) is the simulation generated by ξ for the
state x. The while loop (lines 4- 9) runs until either the threshold is reached or iteration
count is exhausted. v−1 ∆

= Φ−1(x0, v, t) is the inverse sensitivity function which is
learned using a neural network NN Φ−1; ‖·‖2 is the l2-norm.

Benchmark Dims Iteration count = 1 Iteration count = 5
da dr Time (ms) da dr Time (ms)

Brussellator 2 [0.19 - 1.87] [0.23 - 0.74] 11.38 [0.003- 0.22] [0.01 - 0.12] 31.34
Buckling 2 [1.67 - 11.52 [0.17 - 0.45] 13.61 [0.36- 2.09] [0.06 - 0.31] 34.51

Lotka 2 [0.08 - 0.24] [0.21 - 0.45] 12.38 [0.02 - 0.07] [0.09 - 0.22] 34.28
Jetengine 2 [0.05 -0.20] [0.19 - 0.28] 15.96 [0.0004 - 0.05] [0.006 - 0.14] 38.26
Vanderpol 2 [0.29 - 0.58] [0.16 - 0.66] 12.34 [0.03 - 0.18] [0.04 - 0.16] 34.02
Lacoperon 2 [0.03 - 0.13] [0.12 - 0.28] 17.18 [0.003 - 0.03] [0.02 - 0.16] 37.34
Roesseler 3 [0.72 - 2.02] [0.20 - 0.34] 16.08 [0.21 - 0.63] [0.06 - 0.14] 38.26
Lorentz 3 [1.24 - 5.60] [0.29 - 0.58] 24.72 [0.20 - 0.70] [0.05 - 0.17] 60.18
Steam 3 [1.59 - 5.21] [0.31 - 0.67] 8.68 [0.41 - 1.8] [0.08 - 0.30] 69.80

C-Vanderpol 4 [0.87 - 1.72] [0.34 - 0.60] 17.44 [0.20 - 0.40] [0.07 - 0.18] 44.86
HybridOsc. 2 [0.28 - 0.92] [0.13 - 0.29] 16.70 [0.03 - 0.31] [0.01 - 0.10] 45.82
SmoothOsc. 2 [0.37 - 1.09] [0.13- 0.23] 52.22 [0.04 - 0.42] [0.02 - 0.18] 136.72

Mountain Car 2 [0.004 - 0.24] [0.08 - 0.22] 138.90 [0.0002 - 0.005] [0.03 - 0.12] 266.76
Quadrotor 6 [0.014 -1.09] [0.10 - 0.67] 284.96 [0.004 - 0.04] [0.02 - 0.13] 668.78

Table 3: Evaluations. The results of reachTarget after iteration count 1 and 5. We
compute average absolute distance da and relative distance dr over 500 iterations of
our algorithm for each benchmark. Additionally, a range of values is obtained for da
and dr by performing the evaluation on 10 different targets.

Evaluation of reachTarget on Standard Benchmarks We evaluate the performance
of reachTarget algorithm as described in Section 5. We evaluate this by picking a ran-
dom target state in the domain of interest and let reachTarget generate a trajectory that
goes through the neighborhood of the target (ε = 0.01 or 0.001) at a specified time
t. Typically, reachTarget executes the loop in lines 4-9 for 10 times before reaching
the target. In Table 3, we present the relative and absolute distance between the tar-
get and the state reached by the trajectory generated by reachTarget after one or five
iterations of the main loop. The demonstration on benchmarks Steam, Lotka and
Coupled Vanderpol is shown in Figure 1. Experimental results for the variations
of the reachTarget are shown in in Figures 2 and 3

We now discuss a few variations of our algorithm and approaches for evaluating it.

1. Uncertainty in time: The control designer might not be interested in reaching the
target at a precise time instance as long as it lies within a bounded interval of
time. In such cases, one can iterate reachTarget for every step in this interval and
generate a trajectory that approaches the target.
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(a) Steam

(b) Coupled Vanderpol

(c) Lotka

Fig. 1: Illustration of reachTarget after iteration count 4. Iteration 0 is the simulation
from xrandom. Subsequent 3 simulations are labeled as Iteration 1, 2 and 3 respectively.
As shown, with each iteration, the proximity to the target increases.
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(a) Roesseler

(b) Quadrotor

(c) Lorentz

Fig. 2: Illustration of fixed time instance based evaluation for single target. Obtain-
ing multiple simulations in the proximity of a given target at a particular time instance.
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(a) Vanderpol

(b) Brusselator

(c) Hybrid Linear Oscillator

Fig. 3: Illustration of fixed time instance based evaluation for multiple targets. Ob-
taining multiple simulations in the proximity of each target at a particular time instance.
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Consider the designer is interested in finding the maximum distance (or, height)
the car can go to on the left hill in Mountain Car. By providing an ordered
list of target states and a time interval, she can obtain the maximum distance as
well the time instance at which it achieves the maxima (Figure 4(a)). If there is no
state in the given initial set from which the car can go to a particular target, the
approach, as a side effect, can also provide a suitable initial candidate that takes the
car as close as possible to that target. In Quadrotor, one can easily find an initial
configuration from which the system can go to a particular location during a given
time interval (Fig. 4(b)).

2. Generalization: Based on our Mountain Car experiment, we observed that, for
the given initial set, the maximum distance the car can achieve on the left hill is
approx. 1.17. However, even after expanding the initial set to [-0.60, -0.40][0.0,
0.0], our approach finds the maximum achievable distance (1.3019) such that the
car can still reach on the top of the right hill (shown in Fig. 5). This shows that our
neural network is able to generalize the inverse sensitivity over trajectories that go
beyond the test cases considered during the training process.

3. Evaluating MRE for Random Targets: So far we have evaluated our technique with
respect to the target states that are reachable from given initial set. We also perform
evaluation of reachTarget by generating a random trajectory from the domain and
change its course at a provided time interval [25, 70] by a randomly generated
vector. The results are demonstrated in Figure 6.

Discussion: It can be observed from Table 3 that our technique is capable of achieving
below 10% relative distance in almost all cases after 5 iterations. That is, the trajec-
tory generated by reachTarget algorithm after 5 iterations is around 10% away from
the target than the initial trajectory. This was the case even for chaotic systems, hybrid
sysems, and for control systems with neural network components. While training the
neural network might be time taking process, the average time for generating new tra-
jectories that approach the target is very fast (less than a second for all cases). The high
relative distance in some cases might be due to high dimensionality or large distance to
the target which may be reduced further with more iterations.

5.2 Falsification of Safety Specification

One of the widely used methods for performing state space exploration are falsifica-
tion methods [43,38]. Here, the specification is provided in some temporal logic such
as Signal or Metric Temporal Logic [35,31]. The falsifier then generates a set of test
executions and computes the robustness of trajectory with respect to the specification.
It then invokes heuristics such as stochastic global optimization for discovering a tra-
jectory that violates the specification.

Given an unsafe setU , we provide a simple algorithm to falsify safety specifications.
We generate a fixed number (m) of random states in the unsafe set U . Then, using the
reachTarget sub-routine, generate trajectories that reach a vicinity of the randomly
generated states in U . We terminate the procedure when we discover an execution that
enters the unsafe set U . For some standard benchmakrs, we compare the number of
trajectories generated by STL with the trajectories generated using inverse sensitivity in
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(a) Mountain Car

(b) Quadrotor

Fig. 4: Illustration of time interval based evaluation. Finding an instance in a given interval at
which the distance to the target is minimum. The initial set for Mountain Car is [-0.55, -0.45][0.0,
0.0]. Quadrotor has 5 discrete modes and each linear segment in 4(b) corresponds to a mode.
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Fig. 5: Illustration of Initial set expansion based evaluation. Computing the maxi-
mum distance the car can achieve on the left hill after expanding the initial set to [-0.60,
-0.40][0.0, 0.0].

Fig. 7. The box in each of the figures denotes the initial set and the red box represents the
unsafe set. Each of the points in the initial set represents a sample trajectory generated
by the falsification engine.

Falsification using approximation of inverse sensitivity enjoys a few advantages
over other falsification methods. First, since our approach approximates the inverse
sensitivity, and we use the reachTarget sub-routine; if the approximation is accurate
to a certain degree, each subsequent trajectory generated in reachTarget would make
progress towards the destination. Second, if the safety specification is changed slightly
the robustness of the trajectories with respect to new specification and the internal repre-
sentation for the stochastic optimization solver has to be completely recomputed. How-
ever, since our trajectory generation does not rely on computing the robustness for all
the previously generated samples, our algorithm is effective even when the safety spec-
ification is modified.

The third and crucial advantage of our approach lies when the falsification tool does
not yield a counterexample. In those cases, the typical falsification tools cannot provide
any geometric insight into the reason why the property is not satisfied. However, using
an approximation of inverse sensitivity, the system designer can envison the required
perturbation of the reachable set in order to move the trajectory in a specific direction.
This geometric insight would be helpful in understanding why a specific trajectory does
not go into the unsafe set.
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(a) Roesseler: Absolute error

(b) Roesseler: Relative error

Fig. 6: Illustration of Random vectors based evaluation. Plotting absolute and rel-
ative errors for random vectors. The horizontal axis denotes the vector norm. Each
colored-plot corresponds to a particular time instance. The absolute error increases lin-
early with vector size, whereas the relative error appears to be converging. Interestingly,
we observe similar behavior for each system.
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(a) Brusselator (b) Brusselator

(c) Lacoperon (d) Lacoperon

(e) Simulated Annealing (f) Simulated Annealing

Fig. 7: Illustration of falsification in S-Taliro and NeuralExplorer. When a falsification tool
fails to find a counterexample, NeuralExplorer may help (using much less number of samples) the
system designer by providing geometric insight into the reason why the property is not satisfied.
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(a) Lorentz (b) Lorentz

(c) Buckling (d) Buckling

(e) Vanderpol (f) Vanderpol

Fig. 8: Illustration of falsification in S-Taliro and NeuralExplorer. Some scenarios
where S-Taliro terminates with a falsification trajectory faster than our approach.
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Considering these advantages, the results demonstrated in Fig. 7 should not be sur-
prising. We also would like to mention that these advantages come at the computational
price of training the neural networks to approximating the inverse sensitivity. In addi-
tion to the examples shown above, we have included some examples (see Fig. 8) where
S-Taliro terminates with a falsification trajectory faster than our approach. The reasons
for such cases and methods to improve falsification using NeuralExplore are a topic of
future work.

5.3 Density Based Search Methods For State Space Exploration

One of the most commonly used technique for performing state space exploration is
generation of trajectories from a set of random points generated using an apriori distri-
bution. Based on the proximity of these trajectories to the unsafe set, this probability
distribution can further be refined to obtain trajectories that move closer to the unsafe
set. However, one of the computational bottlenecks for this is the generation of trajecto-
ries. Since the numerical ODE solvers are sequential in nature, the refinement procedure
for probability distribution is hard to accelerate.

For this purpose, one can use the neural network approximation of sensitivity to
predict many trajectories in an embarassingly parallel way. Here, a specific set of ini-
tial states for the trajectories are generated using a pre-determined distribution. Only a
few of the corresponding trajectories for the initial states are generated using numeri-
cal ODE solvers. These are called as anchor trajectories. The remainder of trajectories
are not generated, but rather predicted using the neural network approximation of sen-
sitivity and anchor trajectories. That is, ξ(xi, t) + ΦNN (xi, xj − xi, t). Additionally,
the designer has the freedom to choose only a subset of the initial states for only a
specific time interval for prediction and refine the probability distribution for generat-
ing new states. This would also allow us to specifically focus on a time interval or a
trajectory without generating the prefix of it. A few examples of predictive trajectory
generation for performing reachability analysis on Vanderpol oscillator and
Jetengine are provided in Fig. 9 and Fig. 10.

Density Based Search for Falsification Similar to the inverse sensitivity based falsi-
fication, one can use the density based search space method for generating trajectories
that reach a destination and violate a safety specification. The forward density based
search procedure would work as follows. First, an anchor trajectory is generated and
time intervals of its trajectory that are closer to the unsafe set are identified. Then a set
of new initial states are generated according to an apriori decided distribution. Instead
of generating the trajectory from these initial states, the predicted trajectories using the
anchor trajectory and neural network approximation of sensitivity is generated specifi-
cally for the time intervals of interest. Then, the initial state with the predicted trajectory
that is closest to the unsafe set is chosen and a new anchor trajectory from the selected
intial state is generated. This process of generating anchor trajectory, new distribution
of initial states, and moving closer to the unsafe set is continued until you reach within
the threhold that is generated by the user.
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(a)

(b) (c)

(d) (e)

Fig. 9: Illustration of sensitivity in reachability using Vanderpol. A cluster of points is sam-
pled in the neighborhood of a reference state. Actual trajectories as well as predicted trajectories
obtained by the neural network which approximates sensitivity function are shown. Their corre-
sponding displacement from the reference trajectory at each time step are also displayed in (d)
and (e).
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(a)

(b) (c)

(d) (e)

Fig. 10: Illustration of sensitivity in reachability using Jetengine. Actual trajecto-
ries as well as projected trajectories for a cluster of points sampled in the neighborhood
of a reference trajectory are shown. In addition, their displacement from the reference
trajectory at each time instance are displayed.
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Demonstration of this procedure for Vanderpol and Brusselator systems are
shown in Fig. 11 and 12 respectively. Notice that this approach gives an underlying in-
tuition about the geometric behavior of neighboring trajectories. A similar method for
density based estimation using inverse sensitivity approximation can also be devised.
Instead of sampling the initial set, the density based method for inverse sensitivity gen-
erates random states around the unsafe set to be reached and then generates a density
map. An example of such a density map generated is given in Fig. 13.

(a) (b)

(c) (d)

Fig. 11: Illustration of sensitivity in falsification using Vanderpol. The perturbation in the
neighborhood of reference state are greedily chosen in an iterative manner so as to minimize the
distance to unsafe state. The projected and actual displacements from reference trajectories are
shown. The sampled states are classified based on their euclidean distance to the unsafe state.

6 Conclusion and Future Work

We presented NeuralExplorer framework for state space exploration of closed loop con-
trol systems using neural network. Our framework depends on computing neural net-
work approximations of two key properties of a dynamical system called sensitivity and
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(a) (b)

(c) (d)

Fig. 12: Illustration of sensitivity in falsification using Brusselator. For a given
unsafe state, a reference initial state and a set of perturbations in its neighborhood are
randomly chosen. The perturbation that minimizes the distance to the unsafe state is
greedily picked up and the new reference trajectory is sampled from this perturbation.
The procedure repeats until the threshold is reached or the iteration count is exhausted.
The states explored in this iterative process are classified (in Fig. 12(a) and 12(b)) based
on their respective distance to the unsafe state.
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(a) Brusselator: Distance profiles (b) Brusslator: Distance profiles for a different
unsafe spec

(c) Vanderpol: Distance profiles (d) Vanderpol: Distance profiles for a different
time instance

Fig. 13: Illustration of inverse sensitivity in falsification. Given a set of states satis-
fying unsafe spec and a time instance, the routine, starting from a reference trajectory,
attempts to iteratively find a falsifying trajectory. The initial states explored in the pro-
cess are colored according to their distance to unsafe states. These color densities help
in identifying regions in the initial set potentially useful for falsification. Notice the
difference in the distance profiles (color densities) as we change the time instance (in
Vanderpol) or select a difference unsafe spec (in Brusselator).
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inverse sensitivity. We have demonstrated that for standard benchmarks, these functions
can be learned with less than 20% relative error. We demonstrated that our method can
not only be applied to standard nonlinear dynamical systems but also for control sys-
tems with neural network as feedback functions.

Using these approximations of sensitivity and inverse sensitivity, we presented new
ways to performing state space exploration. We also highlighted the advantages of the
falsification methods devised using the approximations. Additionally, we demonstrated
that our techniques give a geometric insight into the behavior of the system and provide
more intuitive information to the user, unlike earlier black box methods. We believe that
these techniques can help the system designer in search of the desired executions. 1

In future, we intend to extend this work to handle more generic systems such as
feedback systems with environmental inputs. We believe such a black-box method for
generating adversarial examples can be integrated into generative adversarial training
for training neural networks for control applications.
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