
Formal verification of run-to-completion style
statecharts using Event-B

K. Morris1, C. Snook2, T.S. Hoang2,
G. Hulette1, R. Armstrong1, and M. Butler2

1 Sandia National Laboratories, Livermore, California, U.S.A.
2 ECS, University of Southampton, Southampton, United Kingdom

Abstract. Although popular in industry, state-chart notations with ‘run
to completion’ semantics lack formal refinement and rigorous verification
methods. State-chart models are typically used to design complex con-
trol systems that respond to environmental triggers with a sequential
process. The model is usually constructed at a concrete level and veri-
fied and validated using animation techniques relying on human judge-
ment. Event-B, on the other hand, is based on refinement from an initial
abstraction and is designed to make formal verification by automatic the-
orem provers feasible. We introduce a notion of refinement into a ‘run to
completion’ statechart modelling notation, and leverage Event-B’s tool
support for theorem proving. We describe the difficulties in translating
‘run to completion’ semantics into Event-B refinements and suggest a
solution. We illustrate our approach and show how critical (e.g. safety)
invariant properties can be verified by proof despite the reactive nature
of the system. We also show how behavioural aspects of the system can
be verified by testing the expected reactions using a temporal logic model
checking approach.

Keywords: run-to-completion, state-charts, refinement

1 Introduction

Statecharts provide a graphical language, generalized from state machines, that
is popular with engineers. Variants appear in Matlab Simulink/Stateflow [11]
and the Ansys tools. Particularly attractive is providing accessibility to abstrac-
tion/refinement via Rodin/Event-B which has an intuitive metaphor in the Stat-
echart semantics [12,13]. The hope is that engineers can better understand the
origin of proof obligations in refinements and achieve formal guarantees earlier
in their designs where it is most tractable. Our approach is focused on a map-
ping to Event-B where safety preservation is key. In our version of Statechart
semantics, refinement means a subset of traces from an abstraction. This has the
beneficial effect of preserving safety properties from abstraction to refinement
and permits proofs to be discharged at the highest tractable level of abstraction
where they are the easiest to discharge.

Many incompatible definitions of refinement have been posed by others [4,10]
and that can lead to confusion. Though these separate refinements have different



2 Morris, Snook et al.

goals, all of which may be attractive to systems designers in different ways,
they will not always preserve safety properties. From the Event-B vernacular
it might be better to relabel these other approaches not as methods of model
“refinement”, but rather methods of model “elaboration”. Preservation of safety
across refinement requires only a few restrictions to the original [5] Statecharts
(e.g. transitions cannot cross containment boundaries arbitrarily), but still allows
for both parallel and hierarchical composition.

The work we will present here includes three refinement rules.

1. Rule A: Guard conditions on a transition can be strengthened; this can be
done by adding textual guards to the transition, or changing the source of
the transition to a nested state.

2. Rule B: Transitions can have additional actions, provided they do not modify
variables appearing in the abstraction; this can be accomplished by adding
textual action to the transition or by changing the target to nested state.

3. Rule C: A state-chart can be embedded within a state of another state-chart
– sometimes called hierarchical composition or hierarchical refinement.

Via the translation explained in Section 5, these rules rely on the usual Event-B
proof obligations to ensure that they do indeed yield refinements in the Event-B
semantics. If an Event-B model B can be shown (via the construction rules of
the Event-B language as well as the proof obligations) to refine another Event-B
model A, then we know that every behavior of B is also a behavior of A. This
definition yields a useful principle of preservation of safety – if we can show that
a bad thing never happens in A, then we can add detail via refinements in B,
knowing that the bad thing will continue to never happen in B. That is, Event-B
refinements preserve safety properties in the sense of [9]. This makes refinement a
useful technique in developing safety-critical systems: one can analyze a simpler
abstract model for critical safety properties and then add detail to the model via
refinements, secure in the knowledge that the safety properties will be preserved.

Although the autonomous drone example in this paper is based on the ex-
ample described in [4], the definition of refinement used in that work is quite
different from our own. This forces some differences in our refinement rules and
consequently the way the example is developed. In [4] “refinement” is a trans-
formation of the model which preserves reachability of a state with respect to
sequences of inputs. However, this also allows the possibility of introducing new
behaviors in the concrete model that the abstraction does not exhibit (more
details are in Section 4). While this notion of refinement seems useful in cer-
tain contexts, unlike refinement in Event-B it does not guarantee preservation of
safety properties. Therefore it should be considered less suited to development
of safety-critical systems.

Section 2 provides background material. Section 3 discusses the Statechart
concept of ‘run to completion’ and how it can be specified in Event-B. Section 4
introduces our example case study; a drone. Section 5 gives an outline of our
translation from State-Chart XML (SCXML) to Event-B. Section 6 illustrates
our approach to verifying safety invariant properties. Section 7 illustrates our
approach to verifying control responses, and Section 8 concludes.



Formal verification of run-to-completion style statecharts using Event-B 3

2 Background

2.1 SCXML

SCXML is a modelling language based on Harel state-charts with facilities for
adding data elements that are modified by transition actions and used in condi-
tions for their firing [16]. SCXML follows a ‘run to completion’ semantics, where
trigger events3 may be needed to enable transitions. Trigger events are queued
when they are raised, and then one is de-queued and consumed by firing all the
transitions that it enables, followed by any (un-triggered) transitions that then
become enabled due to the change of state caused by the initial transition fir-
ing. This is repeated until no transitions are enabled, and then the next trigger
is de-queued and consumed. There are two kinds of triggers: internal triggers
are raised by transitions and external triggers are raised by the environment
(non-deterministicly for the purpose of our analysis). An external trigger may
only be consumed when the internal trigger queue has been emptied. We chose
SCXML as our source language because it is relatively simple compared to some
run to completion modelling languages yet has a well defined action language
and simulation tool support.

2.2 Event-B

Event-B [1,6] is a formal method for system design. It uses refinement to in-
troduce system details gradually into the formal model. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets, constants,
and axioms constraining the carrier sets and constants. Machines contain vari-
ables v, invariants I(v) constraining the variables, and events. An event con-
sists of a guard denoting its enabled-condition and an action defining the value
of variables after the event is executed. In general, an event e has the form:
any t where G(t, v) then S(t, v) end where t are the event parameters, G(t, v) is
the guard of the event, and S(t, v) is the action of the event.

Machines can be refined by adding more details. Refinement can be done by
extending the machine to include additional variables (superposition refinement)
representing new features of the system, or by replacing some (abstract) variables
by new (concrete) variables (data refinement). Refinement in Event-B is reasoned
on an event basis. A (concrete) event f refines an (abstract) event e if whenever f
is enabled then e is also enabled (guard strengthening), and the action of f is the
same or equivalent to e (where equivalence is given by some relationship defined
in the invariants). New events are said to refine ‘skip’ (an implicit abstract event
that did nothing), and therefore do not alter abstract variables. More information
about Event-B refinement can be found in [1]. Event-B is supported by the Rodin
Platform (Rodin4) [2].

3 In SCXML the triggers are called ‘events’, however, we refer to them as ‘triggers’ to
avoid confusion with Event-B

4 An extensible toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.



4 Morris, Snook et al.

2.3 UML-B State-machines

UML-B [14] provides a diagrammatic modelling notation for Event-B in the
form of state-machines and class diagrams. The diagrammatic models relate
to an Event-B machine and generate or contribute to parts of it. For example
a state-machine will automatically generate the Event-B data elements (sets,
constants, axioms, variables, and invariants) to implement the states. Transi-
tions contribute further guards and actions representing their state change, to
the events that they elaborate. State-machines are typically refined by adding
nested state-machines to states. Each state is encoded as a boolean variable and
the current state is indicated by one of the boolean variables being set to TRUE.
An invariant ensures that only one state is set to TRUE at a time. Events change
the values of state variables to move the TRUE value according to the transi-
tions in the state-machine. While the UML-B translation deals with the basic
data formalisation of state-machines it differs significantly from the semantics
discussed in this manuscript. UML-B adopts Event-B’s simple guarded action
semantics and does not have a concept of triggers and run-to-completion. Here
we make use of UML-B’s state-machine translation but provide a completely
different semantic by generating a behaviour into the underlying Event-B events
that are linked to the generated UML-B transitions.

3 Run To Completion

The run to completion semantics is specified via an abstract basis that is ex-
tended by the model [12,13]. Figure 1 shows a state-chart representation of how
the basis enforces the run to completion semantics on the model transitions.

The specification of this basis consists of an Event-B context and machine
that are the same for all input models and are refined by the specific output
of the translation. The basis context introduces a set of all possible triggers,
SCXML TRIGGER which is partitioned into internal and external triggers (e.g
FutureInternalTrigger and FutureExternalTrigger respectively), some of which will
be introduced in future refinements. Each refinement partitions these trigger sets
further to introduce concrete triggers, leaving a new abstract set to represent
the remaining triggers yet to be introduced. For clarity, we use sets to abstractly
represent the trigger queues. This does not affect safety verification but forces
us to introduce fairness assumptions regarding trigger consumption in order to
verify liveness properties. It would be relatively straight forward to properly
model the trigger queues which are an implementation of this fairness property.

Each of the transitions in the basis (see Figure 1) represents an abstract
event of the basis machine that describes the generic behaviour of models under
a run to completion semantics. These events provide an abstraction that defines
the altering of trigger queues and completion flag. Event-B refinement rules
prohibit new events from modifying abstract variables (i.e. new events refine
‘skip’). Hence, since SCXML transitions need to modify the trigger queues etc.,
used to capture the SCXML run to completion semantics, all events generated by
translation of the specific SCXML model, must refine abstract events introduced



Formal verification of run-to-completion style statecharts using Event-B 5

Fig. 1. Abstract representation of run to completion basis

for this purpose in the basis. The basis machine also declares variables that
correspond to the currently dequeued trigger, dt, the queue of internal triggers
raised by actions within the model, iQ, the queue of external triggers raised by
the environment, eQ, and a flag, uc, that signals when a run to completion macro-
step has been completed (no un-triggered transitions are enabled). Note that, for
convenience, the currently dequeued trigger is modelled as a singleton set which
may be empty (i.e. consumed) or contain the single trigger to be consumed.

The trigger queues and dequeued trigger are initialised to empty and uc is set
to FALSE so that un-triggered transitions are dealt with via the futureUntriggeredTransitionSet
event. This will subsequently enable completion and reset the uc flag to TRUE.
The abstract event futureRaiseExternalTrigger represents the raising of an exter-
nal trigger (not shown in the diagram). After completion, a queued trigger can
be prepared for consumption by moving it to the dequeued trigger, dt. Internal
triggers have a higher priority, since the external trigger queue is only dequeued
if the iQ is empty (see dequeueExternalTriggered and dequeueInternalTriggered in
Figure 1). The abstract event futureTriggeredTransitions represents a combina-
tion of transitions that are triggered by the dequeued trigger, dt. The actions
of these transitions may also raise triggers of their own in the internal trigger
queue iQ.

Completion of triggered and untriggered transitions may be non-deterministically
premature to allow future refinements to strengthen the guards of transitions (i.e.
to disable them resulting in an earlier completion). In the process of refining a
model, a designer takes advantage of this non-determinism in the abstraction by
adding nested sub-states and explicit guards to transitions. When a refinement
level is reached where the designer wants to enforce a requirement (i.e. prevent
it being bypassed by a non-deterministic completion), the model needs to be fi-



6 Morris, Snook et al.

nalised (see Section 5 for more on finalisation). The SCXML translation tool will
then automatically strengthen the guards of events NoTriggerTransitionEnable
and futureUntriggeredTransitionSet, to ensure that the run to completion sequence
is not interrupted by non-deterministic behaviour. To do this we need to guard
completion so that it cannot happen while any relevant transition is still en-
abled. To finalise a triggered transition, the guard of NoTriggerTransitionEnable
is strengthened by adding the conjunction of the negated guards of all transi-
tions that can fire in parallel with the transition being finalised. Similarly the
guard of futureUntriggeredTransitionSet is strengthened by adding the conjunc-
tion of the negated guards of all untriggered transitions that can fire in parallel.
It may seem that finalisation could cause an unmanageable explosion of guards.
However, to fire in parallel, transitions must be contained in parallel regions
and also be enabled by the same trigger (or be un-triggered). In practice, since
most systems do not contain many parallel regions, the number of transitions
that can fire in parallel is limited. Transition finalisation can be left until it is
needed for the proof of a particular property and does not generate any new
proof obligations since adding guards is a trivial refinement step. Finalisation is
also needed in order to remove non-deterministic behaviours when the model is
animated for validation purposes.

4 Description of the Sample Application

To illustrate the development and analysis process of a design using the previ-
ously described state-chart semantics, we will discuss a quadrotor helicopter or
quadrotor application similar to the one presented by Syriani et al. [4]. The appli-
cation will focus on the incremental design of some of the drone’s required func-
tionality. The constructed model must obey state-chart refinement rules listed
in Section 1, these rules are proven within the Rodin tool. The structure of the
state-chart for this model at each subsequent abstraction level restricts further
the development of the model to refinements that obey the rules. This will allow
us to prove properties of the model in a very strategic fashion, as properties
proven of early abstraction levels are preserved in later refinements.

The first abstraction of the model shown in Figure 2 captures the basic func-
tionality of the drone. The model’s initial state is OFF and as a result of the on
and toTakeoff external triggers it transitions to the START and OPERATIONAL
states respectively5. The drone reacts to the off external trigger by shutting down
and subsequently transitioning to the OFF state. Within the OPERATIONAL
state the drone will transition to FLY, DESCEND or LANDED state after the in-
ternal trigger toFly, toLand or landed is raised, respectively. In this abstraction,
these internal triggers are raised non-deterministically in the system by function-
ality not currently defined. As additional details are incorporated into the model
in later refinements some of that non-determinism is removed and replaced by
transitions with actions that raised the previously defined internal triggers. It

5 Transitions in Figures 2–3 are labeled with trigger names (e.g. toTakeoff, toFly) not
with event names as it is in UML-B.



Formal verification of run-to-completion style statecharts using Event-B 7

should be noted that this abstraction of the drone model includes a transition
from TAKEOFF to DESCEND (dashed transition in Figure 2). This allows for the
drone to respond to a toLand trigger if it encounters some problems while in the
TAKEOFF state. Syriani et al. [4] introduces this transition in later refinements
under Rule 8 path refinement rule. This rule is inconsistent with our rules of
refinement as it results in a concrete event with no corresponding behavior in
the abstraction.

Fig. 2. State-chart of drone application. Abstract level including only generic behavior.

Fig. 3. State-chart of drone application. Refinement level introducing details for take
off (shown in beige). Refinement level for battery consumption functionality (shown
in green). Refinement level for descending capabilities, in case of emergency (shown in
lilac).

Figure 3 shows three subsequent refinements to the drone model. The first
refinement of the model is shown in beige, as we refine the parent state TAKEOFF
by applying Rule B and C. Under these rules we introduce child states and



8 Morris, Snook et al.

new model variables, similar to Rule 2 basic-to-or state rule defined by Syriani
et al. [4] As part of this refinement we introduced an untriggered transition
responsible for raising the toFly internal trigger, and therefore removed some of
the non-determinisms in the abstraction.

The second refinement, the details of which are shown in green in Figure 3,
extends the capabilities within OPERATIONAL by using Rule C to make it a
parallel state that controls flying and battery related functionality. This is the
same as Rule 4 and-state rule defined by Syriani et al. [4]. The charge within the
drone battery is control by the parallel BATTERYOP state. The functionality
is modeled by introducing a new model variable, charge, which is decreased as
a response to the internal trigger decreaseCharge. The aforementioned trigger,
is raised non-deterministically by some unspecified internal functionality. Our
state-chart semantics supports transition refinement, as such we are able to
modified previously defined transitions. In particular, this type of refinement
allow us to add guards and/or actions to previously defined transitions. The
strengthening of guards, Rule A, or additional actions, Rule B, are expressed
in term of new model variables that contribute implementation details to the
model. To ensure the drone operates with enough battery power we strengthen
the guards of transitions to the FLY and TAKEOFF states. As part of this design
stage we introduce a requirement to constrain drone operation to a battery
charge of at least 20% capacity. This can be expressed as

(BATTERYOK = TRUE)⇒ charge > 20% .

Figure 3 shows the third refinement of the drone model, with features added
in lilac. At this stage we use Rule C to introduce additional implementation
details to ensure that under special circumstances (e.g. sensing of adverse envi-
ronment or unexpected battery dropped) the drone is able to circumvent flying
and proceed to an emergency landing. The previously described requirement can
be expressed as

(TAKEOFF = TRUE)⇒ (BATTERYOK = TRUE ∨ toLand) .

To implement this new capability in the design the internal trigger cancel is
introduced. The internal trigger cancel can be raised non-deterministically by
some sensing capability, the details of which are not currently implemented.
If the trigger is raised, the climbing process must be aborted and the drone
descending sequence shall start. This refinement level is done differently from
Syriani et al. [4], which follows Rule 7 state extension rule. The aforementioned
rule requires a data remapping of the abstract states TAKEOFF, CLIMB and
HOVER, which should be distinct from the states in this refinement, as the state
ABORT is introduced. In contrast, we implement this refinement using a rule
similar to Syriani et al.’s Rule 2 basic-to-or state rule, which introduces the
concrete states CLIMB2 and ABORT to the abstract state CLIMB.



Formal verification of run-to-completion style statecharts using Event-B 9

5 SCXML Translation to Event-B

The translation of a specific SCXML model to UML-B and Event-B, comprises
the following stages:

– Firstly, a basis machine and context are created to embody the semantics of
the SCXML language (Section 3). The basis provides variables and events
to model the queue of triggers as well as abstract versions of events to model
transitions firing. The basis is independent of the particular SCXML model
which is added in subsequent refinements.

– Secondly, all possible combinations of each set of transitions that can fire
together are calculated and corresponding events are generated, at appro-
priate refinement levels, that refine the abstract basis events. The transitions
that can fire together are those that are triggered by the same trigger (or
are both untriggered) and are in different parallel (‘and’) sub-states. If these
transitions raise internal triggers, a guard, (e.g. {i1, i2, ...} ⊆ raisedTrigger,
where i1, i2, ... have been added to the internal triggers set), is introduced to
define the raised triggers parameter. The subset allows more triggers to be
raised in later refinements. For triggered transitions, the trigger is specified
by a guard that defines the value of the trigger parameter.

– Thirdly, the SCXML state-chart is translated into a corresponding UML-B
state-machine whose transitions elaborate (i.e. add state change details to)
the transition combination events that the transition may be involved in.
A transition may fire in parallel with transitions of parallel nested state-
machines that have the same (possibly null) trigger.

– Finally the UML-B state-machine is translated into Event-B by program-
matically invoking the UML-B translator.

A tool to automatically translate SCXML source models into UML-B has
been produced. The tool is based on the Eclipse Modelling Framework (EMF)
and uses an SCXML meta-model provided by Sirius [3] which has good sup-
port for extensibility. The UML-B state-machine is subsequently translated into
Event-B using the standard UML-B translation which provides variables to
model the current state and guards and actions to model the state changes
that transitions perform. Further details of the translation are given in [12,13].

6 Verification of Safety Properties

In a state-chart model we naturally wish to verify properties P that are expected
to hold true in a particular state S. Hence, all of the safety properties that we
consider are of the form: S=TRUE⇒ P, where the antecedent is implicit from
the containment of P within S. There are two kinds of properties that we might
want to verify in an SCXML state-chart; 1) properties concerning the values of
auxiliary data maintained by the system and 2) constraints about the state of
another parallel state-chart region. SCXML models represent components that
react to received triggers and cannot be perfectly synchronised with changes to



10 Morris, Snook et al.

the monitored properties. Hence, P may be temporarily violated until the system
reacts by leaving the state S in which the property is expected to hold. To cater
for this we express P in a modified form P’ that allows time for the reaction to
take place. There are two forms of reaction that can be used to exit S; a) an
untriggered transition, or b) a transition that is triggered by an internally raised
trigger. For a), the modified property P’ becomes P∨ untriggered transitions
are not complete, and for b) P’ becomes P∨ trigger t is in the internal queue
or dequeued (where t is the internal trigger raised when the violation of P is
detected). Hence P is checked only in stable states that are reachable according
to the run-to-completion semantics.

In this section we illustrate a typical example of the type of properties that
we imagine could be verified in a reactive SCXML system. All of the proof
obligations are automatically discharged for our example. Since our models are
strictly structured and proof obligations will always have this common form, we
are optimistic that proofs will always discharge automatically. We model the
safety property features at an early level of refinement where the models are
relatively simple, so that the validity of verification conditions is clear. Detail
is then added in later refinements which are proven (automatically) to preserve
the previously verified safety properties. In our example, some auxiliary data
is monitored by one state-chart region and while a parallel region refers to the
state of the monitoring region. Hence the reaction consists of an un-triggered
transition in the monitoring region which sends an internal trigger to the other
region when it leaves the desired monitor state.

For our drone model, the safety property that we wish to verify is that the
control system does not continue to take off or fly if the battery charge drops
below a certain threshold (say 21%). By refinement level 1 we have developed
the drone’s state to the point where we distinguish the TAKEOFF and FLY
states (Figure 2). In refinement level 2 we therefore introduce the battery charge
monitoring function along with the associated safety properties. A parallel state-
chart region, with sub-states BATTERYOK and BATTERYLOW, is added to the
state OPERATIONAL (Figure 3). The BATTERYOK sub-state is used in the
safety invariant of the TAKEOFF and FLY states. Thus we split the verification
into two parts: a type b proof to show that the system reacts to the battery charge
decreasing below 21% (an external event) by leaving the BATTERYOK sub-state,
and a type a proof to show that when the system leaves the BATTERYOK state it
subsequently (within the run to completion) leaves the FLY or TAKEOFF states.
Both parts are described in more detail as follows.

System Reacts to the Low Battery Charge An external trigger indicates that
the battery charge has dropped by 10% and this is used by a self transition
to decrement the controllers data value for charge. The BATTERYOK state is
supposed to indicate that the battery charge is ok (>20%) and to ensure that it
does, we add a state invariant to this effect (charge>20). When charge decreases
to 20 (or less), an untriggered transition immediately reacts by switching to
the BATTERYLOW state. To ensure that this reaction is not bypassed by the
non-determinism that we incorporated to allow for future refinement, we flag it



Formal verification of run-to-completion style statecharts using Event-B 11

as finalised at refinement level 2. Finalisation means that we cannot strengthen
its guards in future refinements as is normally permitted, since its reaction is
needed to ensure the invariant is preserved. If the user forgoes the finalization,
the property would not be verifiable at that refinement level and it will need
to be verified in later refinements. After translation to Event-B via UML-B the
invariant in state BATTERYOK is

(BATTERYOK = TRUE)⇒ (uc = FALSE∨ charge>20) .

The only events that can break this invariant are ones that make the antecedent
become true or the consequent become false and we deal with these as follows:
The transitions that enter state OPERATIONAL and initialise the BATTERY
region by entering BATTERYOK (hence making the antecedent become true)
contain the guard that charge>50 (since we do not allow the drone to take off
unless the battery is well charged) and hence the invariant is satisfied. The self
transition that decreases charge (and hence could potentially falsify the conse-
quent) is guarded by uc = FALSE since it is a triggered transition, and hence
the disjunction in the consequent ensures it remains true. The completion event
NoUntriggeredTransitions of the basis machine resets uc = TRUE to indicate com-
pletion of the cycle and hence could potentially break the invariant. However,
finalising the transition BATTERYOK BATTERYLOW (that leaves BATTERYOK
when charge>20 becomes false) means that the negation of its guard is added
to the completion event by the translation. Since this transition fires when
BATTERYOK = TRUE (i.e. its source state) and charge≤20 the completion event
is guarded by ¬(BATTERYOK= TRUE ∧ charge≤20) which means that it does
not fire when it could break the invariant (i.e. forcing the untriggered reaction
to fire first).

System Subsequently Leaves the FLY or TAKEOFF States The safety property
of the TAKEOFF and FLY states can now be simply stated as BATTERYOK = TRUE.
However, since this relies on a particular internal trigger (toLand) to make the
appropriate reaction, we also need to specify that trigger as an attribute of the
invariant in the SCXML model. After translation to Event-B via UML-B the
invariant in state TAKEOFF becomes

(TAKEOFF = TRUE)⇒ (toLand∈iQ∨ toLand∈dt ∨BATTERYOK=TRUE).

The invariant for the FLY state is similar with a corresponding antecedent. The
transitions that enter TAKEOFF (which make the antecedent true) simultane-
ously enter BATTERYOK ensure the consequent is true. The only transition that
enters FLY (which makes the antecedent of the FLY invariant true) comes from
the TAKEOFF state and hence the consequent is already true. The transition that
leaves BATTERYOK (making the last disjunct of the consequent false) raises the
toLand trigger making the first disjunct true. Some transitions leave the super-
states of BATTERYOK but these either simultaneously leave OPERATIONAL (the
superstate of TAKEOFF and FLY), or re-enter BATTERYOK. The basis contains
an event to dequeue the internal triggers which preserves the overall consequent



12 Morris, Snook et al.

because establishes the second conjunct as it falsifies the first (i.e. it removes
toLand from the iQ but simultaneously adds it to dt). The only events that fal-
sify the second conjunct are the transitions triggered by toLand which leave the
TAKEOFF or FLY states making the antecedent false.

Hence, invariant properties that follow these suggested patterns are always
automatically proven due to simple logic about the changes in state.

7 Verification of Control Responses

A model that has been proven to satisfy some invariant (e.g. safety) properties,
may still not behave in a useful way. Therefore, as well as verifying invariant
properties, we would like to verify the system’s responsiveness. That is, we want
to ensure that the controller responds to external triggers to make appropriate
modifications to the system variables. These kind of live responses are difficult
to prove via invariant preservation since they are temporal properties. While
Event-B refinements have also been shown to preserve some liveness properties
under certain conditions [7], there are not yet efficient supporting tools for the
technique. Instead, we can express the property in Linear Temporal Logic (LTL)
and use the ProB6 model checker to verify it.

In general, our liveness properties will have the following form:

G([external trigger event]⇒ F{predicate}) ,

where the predicate concerns variables v that the system maintains, and may
refer to old values old(v) that existed when the external trigger occurred. To
specify a liveness property to be verified, a special LTL element is added to
the SCXML model with attributes, property (a string of the above form) and
refinement (an integer indicating the refinement level at which the property
should be verified). The translator generates a separate ‘branch’ refinement for
each LTL property to be verified. In this special refinement, history variables
are added to record the value at the state when the external trigger occurs,
of any variables that are referenced as ‘old’ values. A text file is automatically
generated containing the LTL property to be checked. In this generated version,
an assumption of strong fairness is added for all other events in the model.
Without this assumption, the system may never achieve the expected response
to a trigger. Therefore it corresponds to a requirement that the system can
always make satisfactory progress and not become live locked. For simplicity we
omit this assumption from the remaining examples.

SF[e1]∧ SF[e2]...⇒G([external trigger event]⇒ F[predicate])

This property can be added into the ProB model checker LTL formula text field.
We illustrate the method with an example of a temporal property that we

expect to hold in the drone SCXML system. The liveness property that we

6 ProB is an animator, constraint solver and model checker for the B-Method.
https://www3.hhu.de/stups/prob



Formal verification of run-to-completion style statecharts using Event-B 13

wish to verify is that, after an external trigger event decreaseCharge, the battery
charge value should decrease in value.

G ([ExternalTriggerEvent decreaseCharge]⇒ F {charge < old(charge)}) .

However, we could not verify this property. The counter example traces that
ProB provided gave us a better understanding of the reasons why. The prop-
erty as stated is too strong (i.e. not true) for our model; there are additional
conditions that need to be considered and added as part of the antecedent.

– Our model represented the trigger queues abstractly as sets which meant
that the decreaseCharge trigger may never be dequeued. The standalone ver-
sion of ProB allows strong fairness to be specified for particular parameter
values but this does not work in the Rodin plug-in for ProB. In any case, a
more accurate (concrete) representation of the queue fixes the problem and
improves our model.

– The charge is not always decreased in response to the decreaseCharge trigger.
The controller only monitors battery charge while in the BATTERYOK state
and discards the trigger in other states. Also, the controller stops decreasing
charge when it approaches 0. To cater for this we added a pre-condition
BATTERYOK = TRUE ∧ charge≥10 to the LTL property.

– Even if this pre-condition is true when the trigger is raised, another trig-
ger (e.g. off) may already be in the queue and take the controller out of
BATTERYOK before the decreaseCharge trigger is dequeued. Again we strengthen
the pre-condition off /∈ dt ∪ eQ of the LTL expression to avoid this situation.

After making these changes the final form of the LTL property, which ProB was
able to exhaustively check and confirm was as follows:

G([ExternalTriggerEvent decreaseCharge]∧ {BATTERYOK=TRUE ∧ charge≥10∧
off/∈SCXML dt∪SCXML eq}⇒ F {charge < old(charge)}) .

8 Conclusion

Reactive Statecharts are useful and widely used by engineers for modelling the
design of control systems. Event-B provides an effective language for formally
verifying properties via incremental refinements. However, it is not straightfor-
ward to apply the latter to the former. We have demonstrated a technique for
introducing refinement of reactive Statecharts that can be translated to Event-B
for verification. Invariant properties about the expected coordination of states
can be added and are interpreted with additional allowance for the reactions
to take place. That is, they hold only after the reaction has taken place. Such
invariants prove automatically with the existing Rodin theorem provers. We also
demonstrate a complementary process for verifying expected reactions to envi-
ronmental triggers that uses the LTL model checker. Another kind of liveness
property that would be useful to verify is that the ‘run’ converges to completion.



14 Morris, Snook et al.

I.e. transition loops and raised internal triggers do not introduce endless live-
lock, but eventually terminate to allow the next external trigger to be consumed.
This could also be verified using the LTL model checker, however, in future work
we will adopt the techniques suggested in [8] to verify liveness properties using
the theorem provers.

These verifications do not validate that the model behaviour is useful. For
this, the SCXML model should be animated so that its behaviour can be ob-
served by a domain expert. Elsewhere [15] we have developed a ‘Scenario Checker’
tool and methods for animating pre-defined domain specific scenarios at various
levels of abstract. In future work we will demonstrate the use of this tool for
automatically executing the run to completion. In future work, we also intend
to formalise the semantics of our extended SCXML notation in order to define
its notion of refinement and correspondence to Event-B.

All data supporting this study are openly available from the University of Southampton repository
at https://doi.org/10.5258/SOTON/D1475

Acknowledgements Sandia National Laboratories is a multimission laboratory managed and op-
erated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Software Tools for Tech-
nology Transfer 12(6), 447–466 (Nov 2010)

3. Eclipse Foundation: Sirius project website.
https://eclipse.org/sirius/overview.html (Mar 2016)

4. Eugene Syriani, Vasco Sousa, L.L.: Structure and behavior preserving statecharts
refinements. Science of Computer Programming 170(15), 45–79 (Jan 2019), https:
//doi.org/10.1016/j.scico.2018.10.005

5. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (Jun 1987). https://doi.org/10.1016/0167-6423(87)90035-9

6. Hoang, T.S.: An introduction to the Event-B modelling method. In: Industrial
Deployment of System Engineering Methods, pp. 211–236. Springer-Verlag (2013)

7. Hoang, T.S., Schneider, S., Treharne, H., Williams, D.: Foundations for using linear
temporal logic in event-b refinement. Formal Aspects of Computing 28 (04 2016).
https://doi.org/10.1007/s00165-016-0376-0

8. Hudon, S., Hoang, T.S., Ostroff, J.S.: The Unit-B method — refinement guided by
progress concerns. Software and System Modeling 15(4), 1091–1116 (Oct 2016),
http://dx.doi.org/10.1007/s10270-015-0456-2

9. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering SE-3 2, 125–143 (March 1977)

10. Maraninchi, F.: The Argos language: Graphical representation of automata and
description of reactive systems. In: In IEEE Workshop on Visual Languages (1991)

11. MATLAB: 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts

https://doi.org/10.1016/j.scico.2018.10.005
https://doi.org/10.1016/j.scico.2018.10.005
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/s00165-016-0376-0
http://dx.doi.org/10.1007/s10270-015-0456-2


Formal verification of run-to-completion style statecharts using Event-B 15

12. Morris, K., Snook, C., Hoang, T.S., Armstrong, R., Butler, M.: Refinement of
statecharts with run-to-completion semantics. In: Artho, C., Ölveczky, P.C. (eds.)
Formal Techniques for Safety-Critical Systems. pp. 121–138. Springer International
Publishing, Cham (2019)

13. Morris, K., Snook, C., Hoang, T.S., Hulette, G., Armstrong, R., Butler, M.: Re-
finement and verification of responsive control systems. In: Raschke, A., Méry, D.,
Houdek, F. (eds.) Rigorous State-Based Methods. pp. 272–277. Springer Interna-
tional Publishing, Cham (2020)

14. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by
UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (Jan 2006).
https://doi.org/10.1145/1125808.1125811

15. Snook, C., Hoang, T.S., Dghaym, D., Fathabadi, A.S., Butler, M.: Domain-specific
scenarios for refinement-based methods. (to be published in) Journal of Systems
Architecture (2020)

16. W3C: State chart XML SCXML: State machine notation for control abstraction.
http://www.w3.org/TR/scxml/ (Sep 2015)

https://doi.org/10.1145/1125808.1125811

	Formal verification of run-to-completion style statecharts using Event-B

