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Abstract

The longest square subsequence (LSS) problem consists of computing a longest
subsequence of a given string S that is a square, i.e., a longest subsequence of form
X X appearing in S. It is known that an LSS of a string S of length n can be computed
using O(n?) time [Kosowski 2004], or with (model-dependent) polylogarithmic speed-
ups using O(n?(loglogn)?/log?n) time [Tiskin 2013]. We present the first algorithm
for LSS whose running time depends on other parameters, i.e., we show that an LSS
of S can be computed in O(r min{n, M}log % +n + M logn) time with O(M) space,
where 7 is the length of an LSS of S and M is the number of matching points on S.

1 Introduction

Subsequences of a string S with some interesting properties have caught much attention
in mathematics and algorithmics. The most well-known of such kinds is the longest in-
creasing subsequence (LIS), which is a longest subsequence of S whose elements appear
in lexicographically increasing order. It is well known that an LIS of a given string S of
length n can be computed in O(nlogn) time with O(n) space [9]. Other examples are the
longest palindromic subsequence (LPS) and the longest square subsequence (LSS). Since
an LPS of S is a longest common subsequence (LCS) of S and its reversal, an LPS can be
computed by a classical dynamic programming for LCS, or by any other LCS algorithms.

Computing an LSS of a string is not as easy, because a reduction from LSS to LCS
essentially requires to consider n — 1 partition points on S. Kosowski [6] was the first to
tackle this problem, and showed an O(n?)-time O(n)-space LSS algorithm. Computing
LSS can be motivated by e.g. finding an optimal partition point on a given string so
that the corresponding prefix and suffix are most similar. Later, Tiskin [I0] presented
a (model-dependent) O(n?(loglogn)?/log? n)-time LSS algorithm, based on his semi-local
string comparison technique applied to the n—1 partition points (i.e. n—1 pairs of prefixes
and suffixes.) Since strongly sub-quadratic O(n?~¢)-time LSS algorithms do not exist for
any € > 0 unless the SETH is false [2], the aforementioned solutions are almost optimal in
terms of n.



In this paper, we present the first LSS algorithm whose running time depends on other
parameters, i.e., we show that an LSS of S can be computed in O(r min{n, M}log % +n +
M log n) time with O(M) space, where r is the length of an LSS of S and M is the number of
matching points on S. This algorithm outperforms Tiskin’s O(n?(loglogn)?/log?® n)-time
algorithm when r = o(n(loglogn)?/log®n) and M = o(n?(loglogn)?/log®n).

Our algorithm is based on a reduction from computing an LCS of two strings of total
length n to computing an LIS of an integer sequence of length at most M, where M is
roughly n?/o for uniformly distributed random strings over alphabets of size 0. We then
use a slightly modified version of the dynamic LIS algorithm [3] for our LIS instances that
dynamically change over n— 1 partition points on S. A similar but more involved reduction
from LCS to LIS is recently used in an intermediate step of a reduction from dynamic time
warping (DTW) to LIS [§]. We emphasize that our reduction (as well as the one in [8])
from LCS to LIS should not be confused with a well-known folklore reduction from LIS to
LCS.

Independently to this work, Russo and Francisco [7] showed a very similar algorithm
to solve the LSS problem, which is also based on a reduction to LIS. Their algorithm runs
in O(r min{n, M} logmin{r, 2} +rn + M) time and O(M) space.

2 Preliminaries

Let ¥ be an alphabet. An element S of ¥* is called a string. The length of a string S
is denoted by |S|. For any 1 < i < |S|, S[i] denotes the ith character of S. For any
1 <i<j<|S|, S[i.j] denotes the substring of X beginning at position ¢ and ending at
position j.

A string X is said to be a subsequence of a string S if there exists a sequence 1 < i1 <
- < i)x| < |S] of increasing positions of S such that X = S[i1]--- S[i|x|]. Such a sequence
i1,...,% x| of positions in S is said to be an occurrence of X in S.

A non-empty string Y of form X X is called a square. A square Y is called a square
subsequence of a string S if square Y is a subsequence of S. Let LSS(.S) denote the length
of a longest square subsequence (LSS) of string S. This paper deals with the problem of
computing LSS(S) for a given string S of length n.

For strings A, B, let LCS(A, B) denote the length of the longest common subsequence
(LCS) of A and B. For a sequence T' of numbers, a subsequence X of T' is said to be an
increasing subsequence of T if X[i] < X[i 4+ 1] for 1 < i < |X|. Let LIS(T) denote the
length of the longest increasing subsequence (LIS) of T

A pair (i,7) of positions 1 < i < j < [S| is said to be a matching point if S[i]
The set of all matching points of S is denoted by M(S), namely, M(S) = {(i,7) |
j <151, S0 = S} Let M = [M(S)].

= S[jl.
1<i<

3 Algorithm

We begin with a simple folklore reduction of computing LSS(S) to computing the LCS of
n — 1 pairs of the prefix and the suffix of S.

Lemma 1 ([6]) LSS(S) = 2max;j<p<n LCS(S[1..p], S[p + 1..n]).
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Figure 1: Correspondence between an LLCS of A = acbabc, B = cabacbc and an LIS of T

Following Lemma [} one can use the decremental LCS algorithm by Kim and Park [5]
for computing LSS(S). Given two strings A and B of length n, Kim and Park proposed how
to update, in O(n) time, an O(n?)-space representation for the dynamic programming table
for LCS(A, B) when the leftmost character is deleted from B. Since their algorithm also
allows to append a character to A in O(n) time, it turns out that LSS(S) can be computed
in O(n?) time and space. Kosowski [6] presented an O(n?)-time ©(n)-space algorithm
for computing LSS(S), which can be seen as a space-efficient version of an application
of Kim and Park’s algorithm to this specific problem of computing LSS(S). Tiskin [10]
also considered the problem of computing LSS(S), and showed that using his semi-local
LCS method, LSS(S) can be computed in O(n?(loglogn)?/log®n) time. We remark that
the log-shaving factor is model-dependent (i.e., Tiskin’s method uses the so-called “Four-
Russian” technique).

Let A = S[l..p], A’ = S[l.p+ 1], B= S[p+ 1.n] and B' = S[p + 2..n]. For ease of
explanations, suppose that the indices on B and B’ begin with p+1 and p+2, respectively.
Next, we further reduce computing LCS(A’, B’) from (a representation of) LCS(A, B), to
computing an LIS of a dynamic integer sequence of length at most M = |M(S)|.

For any integer pairs (u,v) and (z,y), let (u,v) < (x,y) if (i) v < x, or (ii) v = = and
v < y. Consider the following integer sequence T Let P be the set of integer pairs (i,n—j)
such that S[i] = Afi] = B[p+ j] = B[|A| + j] = S[j]. Then, we set T'[q] = j iff the integer
pair (i,n — j) is of rank ¢ in P w.r.t. <. See Figure [l| for an example. Intuitively, T is
an integer sequence representation of the (transposed) matching points between A and B,
obtained by scanning the matching points between A and B from the bottom row to the
top row, where each row is scanned from right to left. Clearly, the length of the integer
sequence 1" is bounded by M.

Lemma 2 Any common subsequence of A and B corresponds to an increasing subsequence
of T of the same length. Also, any increasing subsequence of T corresponds to a common
subsequence of A and B of the same length.

Proof. For any common subsequence C' of A and B, let iy < -+ <ijg and j1 < --- < jg
be occurrences of C' in A and B, respectively. For any 1 < k < |C|, let ¢ and gx11 be
the ranks of integer pairs (ix,n — ji) and (ig+1,n — jr+1) in the set P w.r.t. <. By the
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Figure 2: Illustration on how points in the 2D plane (and elements in 7') are to be deleted
or inserted when A and B are updated to A’ and B’, respectively.

definition of T'; qx < qr+1 and T'[gx] < T'[qx+1] hold. Hence, C' corresponds to an increasing
subsequence of T' of the same length.

For any increasing subsequence [ in T, let ¢; < --- <t be an occurrence of I in T'.
For any 1 < k < |I|, let (ix,n — jx) and (ig11,n — jr+1) be the integer pairs corresponding
to I[k] = Tty] and Ik 4+ 1] = Tig11], respectively. Since ji = T[tg] < T[tg+1] = Jrt1, we
have

n = Jrr1 <N — Jk- (1)

Since (ig, n—7jk) < (ig+1,n—jk+1), €ither (i) i < igy1 or (i) i = ig41 and n—jJx < n—Jr4+1
must hold. By inequality , (ii) cannot hold, and thus (i) holds. Hence A[ig]Alix+1] =
Bljr]B[jj+1] is a common subsequence of A and B. Hence, I corresponds to a common
subsequence of A and B of the same length. O

By Lemma |2, computing LCS(A, B) can be reduced to computing LIS(T).

Let T" be the integer sequence for A’ and B’ defined analogously to T' for A and B.
Now the task is how to compute LIS(T") from (a data structure that represents) LIS(T').
See Figure [2| for an example. Observe that when the leftmost character is deleted from B
(upper part of Figure , then the lowest points are deleted from the 2D plane, and thus all
the elements with minimum value are deleted from T'. Also, when the leftmost character
of B is appended to A (upper part of Figure , which gives us A" = S[1..p + 1], then a
new point for every j with A’[|A’|] = B’[j] is inserted to the right end of the 2D plane in
decreasing order of j, and thus j is appended to the right end of 7" in decreasing order
of j, one by one. Thus, computing LCS(A’, B') from LCS(A, B) reduces to the following
sub-problem:
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Figure 3: Lists £y, for pairs (¢, T'[t]).

Problem 1 For a dynamic integer sequence T', maintain a data structure that supports
the following operations and queries:

e Insertion: Insert a new element to the right-end of T';
e Batched Deletion: Delete all the elements with minimum value from T';

o Query: Return LIS(T).

We can use Chen et al.’s algorithm [3] for insertions. Let ¢ = LIS(T"). Their algorithm
supports insertions at the right-end of T in O(log |T|) time each. Since |T| < M < n?,
insertions at the right-end can be done in O(logn) time.

Next, let us consider batched deletions. Chen et al. [3] showed that an insertion or
deletion of a single element at an arbitrary position of T' can be supported in O(¢log l%) C
O(flog ) time each. However, since our batched deletion may contain O(|T'|) € O(M)
characters in the worst case, a naive application of a single-element deletion only leads to
an inefficient O(¢|T'|1log %) € O(¢M log %) batched deletion. In what follows, we show how
to support batched deletions in O(£log %) time each, using Chen et al.’s data structure.

For any position 1 <t < |T| in sequence T', let () denote the length of an LIS of T'[1..1]
that has an occurrence i1 < --- < 4;;) = ¢, namely, an occurrence that ends at position ¢
in T'. The following observations are immediate:

Lemma 3 ([3]) Let q be the second to last position of any occurrence of a length-l(t) LIS
of T[1..t] ending at position t. Then, l(q) = I(t) — 1.

Lemma 4 ([3]) If g <t and l(q) = I(t), then T[q] > Tt].

For any 1 < k < ¢, let Ly, be a list of pairs (¢, T[t]) such that [(t) = k, sorted in
increasing order of the first elements t. See Figure [3| for an example. It follows from
Lemma 4] that this list is also sorted in non-increasing order of the second elements T'[t].
It is clear that LIS(T) = max{k | L # 0}. It is also clear that for any k > 1, if £ # 0,
then L;_1 # (. Thus, our task is to maintain a collection of the non-empty lists L1, ...,
Ly that are subject to change when T is updated to 7”. As in [3], we maintain each L by
a balanced binary search tree such as red-black trees [4] or AVL trees [1].

The following simple claim is a key to our batched deletion algorithm:



Lemma 5 The pairs having the elements of minimum value in T are at the tail of Lq.

Proof. Since the list £ is sorted in non-increasing order of the second elements, the claim
clearly holds. (|

Lemma 6 We can perform a batched deletion of all elements of T with minimum value
in O(Llog ) time, where £ = LIS(T).

Proof. Due to Lemma 5], we can delete all the elements of 7" with minimum value from the
list £; by splitting the balanced search tree into two, in O(log|L£1]) time.

The rest of our algorithm follows Chen et al.’s approach [3]: Note that the split op-
eration on £y can incur changes to the other lists Lo, ..., £y. Let I'(t) be the length of
an LIS of T'[1..t] that has an occurrence ending at position ¢ in 7”7, and let £} be the
list of pairs (¢, T'[t]) such that I'(t) = k sorted in increasing order of the first elements ¢.
Let Q1 be the list of deleted pairs corresponding to the smallest elements in 7', and let
Qr ={t|U(t) =k, l'(t) = k — 1} for k > 2. Then, it is clear that £} = (Lg \ Qk) U Qky1.
Chen et al. [3] showed that Q1 can be found in O(log |L+1|) time for each k, provided
that Qj has been already computed. Since Qj is a consecutive sub-list of Ly (c.f. [3]),
the split operation for £y \ Qi can be done in O(log|Lk|) time, and the concatenation
operation for (L \ Q) U Qky1 can be done in O(log|L| + log|Lky1|) time, by stan-
dard split and concatenation algorithms on balanced search trees. Thus our batched
deletion takes O(> 1 p<plog|Ly|) = O(log(|£1]---|L¢])) time, where £ = LIS(T). Since
> icper Lkl = |T| and log(|L1] - -+ |L£e]) is maximized when |L£1]| = --- = |£], the above
time complexity is bounded by O(¢log %') C O(flog ) time. O

We are ready to show our main theorem.

Theorem 1 An LSS of a string S can be computed in O(r min{n, M} log % +n+ M logn)
time with O(M) space, where n = |S|, r = LSS(S), and M = |[M(S)|.

Proof. By Lemma [l| and Lemma [2] it suffices to consider the total number of insertions,
batched deletions, and queries of Problem [I| for computing an LIS of our dynamic integer
sequence T'. Since each matching point in M(S) is inserted to the dynamic sequence exactly
once, the total number of insertions is exactly M. The total number of batched deletions is
bounded by the number n—1 of partition points p that divide S into S[1..p] and S[p+1..n].
Also, it is clearly bounded by the number M of matching points. Thus, the total number of
batched deletions is at most min{n, M}. We perform queries n — 1 times for all 1 < p < n.
Each query for LIS(T") can be answered in O(1) time, by explicitly maintaining and storing
the value of LIS(T") each time the dynamic integer sequence T is updated. Thus, it follows
from Lemma |§| that our algorithm returns LSS(S) in O(r min{n, M} log & + M logn) time.
By keeping the lists £, for a partition point p that gives 2¢ = r = LSS(S), we can also
return an LSS (as a string) in O(rlog ) time, by finding an optimal sequence elements
from Ly, Ly—1, ..., £1. The additive n term in our O(r min{n, M}log?* + n + M logn)
time complexity is for testing whether the input string S consists of n distinct characters
(if so, then we can immediately output 7 = 0 in O(n) time).

The space complexity is clearly linear in the total size of the lists L1,... Ly, which is
|T| € O(M). O



When r = o(n(loglogn)?/log®n) and M = o(n?(loglogn)?/log®n), our algorithm
running in O(rmin{n, M}log % + n + M logn) time outperforms Tiskin’s solution that
uses O(n?(loglogn)?/log?n) time [10]. The former condition r = o(n(loglogn)?/ log®n)
implies that our algorithm can be faster than Tiskin’s algorithm (as well as Kosowski’s
algorithm [6]) when the length r of the LSS of the input string S is relatively short. For
uniformly distributed random strings of length n over an alphabet of size o, we have
M =~ n?/o. Thus, for alphabets of size 0 = w(log®n/(loglogn)?), the latter condition
M = o(n?*(loglogn)?/log®n) is likely to be the case for the majority of inputs.
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