Understanding Programming Languages

CLiff B. Jones

Understanding Programming
Languages

@ Springer

Cliff B. Jones

School of Computing
Newcastle University
Newcastle upon Tyne, UK

ISBN 978-3-030-59256-1 ISBN 978-3-030-59257-8 (eBook)
https://doi.org/10.1007/978-3-030-59257-8

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-59257-8

Preface

The principal objective of this book is to teach a skill; to equip the reader with a way
to understand programming languages at a deep level.

There exist far more programming languages than it makes sense even to attempt
to enumerate. Very few of these languages can be considered to be free from issues
that complicate —rather than ease— communication of ideas.

Designing a language is a non-trivial task and building tools to process the lan-
guage requires a significant investment of time and resources. The formalism de-
scribed in this book makes it possible to experiment with features of a programming
language far more cheaply than by building a compiler. This makes it possible to
think through combinations of language features and avoid unwanted interactions
that can confuse users of the language. In general, engineers work long and hard on
designs before they commit to create a physical artefact; software engineers need to
embrace formal methods in order to avoid wasted effort.

The principal communication mode that humans use to make computers perform
useful functions is to write programs — normally in “high-level” programming lan-
guages. The actual instruction sets of computers are low-level and constructing pro-
grams at that level is tedious and unintuitive (I say this from personal experience
having even punched such instructions directly into binary cards). Furthermore these
instruction sets vary widely so another bonus from programming in a language like
Java is that the effort can migrate smoothly to computer architectures that did not
even exist when the program was written.

General-purpose programming languages such as Java are referred to simply as
“High-Level Languages” (HLLs). Languages for specific purposes are called “Do-
main Specific”’ (DSLs). HLLs facilitate expression of a programmer’s intentions by
abstracting away from details of particular machine architectures: iteration can be
expressed in an HLL by an intuitive construct — entry and return from common
code can be achieved by procedure calls or method invocation. Compilers for HLLs
also free a programmer from worrying about when to use fast registers versus slower
store accesses.

Designing an HLL is a challenging engineering task: the bigger the gap between
its abstraction level and the target hardware architecture, the harder the task for the

vi Preface

compiler designers. A large gap can also result in programmers complaining that
they cannot get the same efficiency writing in the HLL as if they were to descend to
the machine level.

An amazing number of HLLs have been devised. There are many concepts that
recur in different languages but often deep similarities are disguised by arbitrary
syntactic differences. Sadly, combinations of known concepts with novel ideas often
interact badly and create hidden traps for users of the languages (both writers and
readers).

Fortunately, there is a less expensive way of sorting out the meaning of a pro-
gramming language than writing a compiler. This book is about describing the
meaning (semantics) of programming languages. A major objective is to teach the
skill of writing semantic descriptions because this provides a way to think out and
make choices about the semantic features of a programming language in a cost-
effective way. In one sense a compiler (or an interpreter) offers a complete formal
description of the semantics of its source language. But it is not something that
can be used as a basis for reasoning about the source language; nor can it serve
as a definition of a programming language itself since this must allow a range of
implementations. Writing a formal semantics of a language can yield a far shorter
description and one about which it is possible to reason. To think that it is a sensible
engineering process to go from a collection of sample programs directly to coding a
compiler would be naive in the extreme. What a formal semantic description offers
is a way to think out, record and analyse design choices in a language; such a de-
scription can also be the basis of a systematic development process for subsequent
compilers. To record a description of the semantics of a language requires a notation
— a “meta-language”. The meta-language used in this book is simple and is covered
in easy steps throughout the early chapters.

The practical approach adopted throughout this book is to consider a list of issues
that arise in extant programming languages. Although there are over 60 such issues
mentioned in this book, there is no claim that the list is exhaustive; the issues are
chosen to throw up the challenges that their description represents. This identifies a
far smaller list of techniques that must be mastered in order to write formal semantic
descriptions. It is these techniques that are the main takeaway of the current book.

Largely in industry (mainly in IBM), I have worked on formal semantic descrip-
tions since the 1960s! and have taught the subject in two UK universities. The payoff
of being able to write formal abstract descriptions of programming languages is that
this skill has a far longer half-life than programming languages that come and go:
one can write a description of any language that one wants to understand; a lan-
guage designer can experiment with combinations of ideas and eliminate “feature
interactions” at far less cost and time than would be the case with writing a compiler.

The skill that this book aims to communicate will equip the reader with a way
to understand programming languages at a deep level. If the reader then wants to

! This included working with the early operational semantic descriptions of PL/I and writing the
later denotational description of that language. PL/I is a huge language and, not surprisingly, con-
tains many examples of what might be regarded as poor design decisions. These are often taken as
cautionary tales in the book but other languages such as Ada or CHILL are not significantly better.

Preface vii

design a programming language (DSL or HLL), the skill can be put to use in creating
a language with little risk of having hidden feature interactions that will complicate
writing a compiler and/or confuse subsequent users of the language.

In fact, having mastered the skill of writing a formal semantic description, the
reader should be able to sketch the state and environment of a formal model for
most languages in a few pages. Communicating this practical skill is the main aim
of this book; it seeks neither to explore theoretical details nor to teach readers how
to build compilers.

Using this book

The reader is assumed to know at least one (imperative) HLL and to be aware of
discrete maths notations such as those for logic and set theory — [MS13], for ex-
ample, covers significantly more than is expected of the reader. On the whole, the
current book is intended to be self-contained with respect to notation.

The material in this book has been used in final-year undergraduate teaching for
over a decade; it has evolved and the current text is an almost complete rewrite.
Apart from a course environment, it is hoped that the book will influence design-
ers of programming languages. As indicated in Chapter 1, current languages offer
many unfortunate feature interactions which make their use in building major com-
puter systems both troublesome and unreliable. Programming languages offer the
essential means of expression for programmers — as such they should be as clean
and free from hidden traps as possible. The repeated message throughout this book
is that it is far cheaper and more efficient to think out issues of language design be-
fore beginning to construct compilers or interpreters that might lock in incompletely
thought-out design ideas.

Most chapters in the book offer projects, which vary widely in their challenge.
They are not to be thought of as offering simple finger exercises — some of them
ask for complete descriptions of languages — the projects are there to suggest what
a reader might want to think about at that stage of study.

Some sections are starred as not being essential to the main argument; most chap-
ters include a section of “further material”. Both can be omitted on first reading.

Writing style

“The current author” normally eschews the first person (singular or plural) in tech-
nical writing; clearly, I have not followed this constraint in this preface. Some of the
sections that close each chapter and occasional footnotes also use the first person
singular when a particular observation warrants such employment.

viii Preface

Acknowledgements

I have had the pleasure of working with many colleagues and friends on the subject
of programming language semantics. Rather than list them here, their names will
crop up throughout the book. I have gained inspiration from students who have fol-
lowed my courses at both Newcastle University and the University of Manchester.
I’'m extremely grateful to Jamie Charsley for his insertion of indexing commands.
I owe a debt to Troy Astarte, Andrzej Blikle, Tom Helyer, Adrian Johnson and Jim
Woodcock, who kindly offered comments on various drafts of this book. (All re-
maining errors are of course my responsibility.) My collaboration with Springer
—especially with Ronan Nugent— has been a pleasure. I have received many grants
from EPSRC over the years — specifically, the “Strata” Platform Grant helped sup-
port recent work on this book.

Contents

1 Programming languages and their description..................... 1
1.1 Digital computers and programming languages.................. 1
1.2 Theimportance of HLLs o it 2
1.3 Translators, €tC.o vttt e 5
1.4 Insights from natural languages oiiunnn... 7
1.5 Approaches to describing semantics 7
1.6 Ameta-languagecoviriiiii e 11
1.7 Furthermaterial 0. 14
2 Delimitingalanguage i 19
2.1 CONCTELE SYNMEAX . . v vttt ettt e et et e e e et e ie et 19
2.2 ADbStract Syntaxiiiiiii e 25
2.3 Furthermaterial 31
3 Operational semanticsoiiiiiiiiin... 33
3.1 Operational semantics.c.ouiiiiiininneennnnn... 33
3.2 Structural Operational Semantics 38
3.3 Furthermaterial 45
4 Constraining typesuuuutti 51
4.1 Static vs. dynamic error detectionoiiiaa... 52
4.2 Context CONILIONS . ..o vvttt ettt ittt 53
4.3 SemantiC ObJECES . .. v ittt e 57
4.4 Furthermaterial 62
S5 Blockstructure 65
5.1 BIOCKS . .ttt 65
5.2 Abstractlocations i e 68
5.3 Procedures 73
5.4 Parameter passingttt 76
5.5 Furthermaterial 80

ix

10

11

Contents

Further issues in sequential languages 83
6.1 Ownvariables 83
6.2 Objectsandmethodsoouuniiiniinii i 84
6.3 Pascal variantrecords i 85
6.4 Heapvariables 87
6.5 FUNCHONS\ttt e e et 89
6.6 Furthermaterial 93
Other semantic approaches 95
7.1 Denotational SemManticsvuurie e erneeineaeannna 96
7.2 Furthermaterial 99
7.3 The axiomatic approach i i i 101
7.4 Furthermaterial 113
7.5 Roles for semantic approaches. L 116
Shared-variable concurrency i, 119
8.1 Imterferencettt 119
8.2 Small-stepsemantics. 121
83 Granularityt 122
8.4 Rely/Guarantee reasoning [*] 124
8.5 Concurrent Separation Logic [*]o, 126
8.6 Furthermaterial i 128
Concurrent OOLs i 131
9.1 Objects fOr CONCUITENCY . ..ot vvi ettt ettt iie e 132
0.2 EXPIESSIONS . v vttt ettt e et e et e 137
9.3 Simple statements i 138
9.4 Creating ObjectSvvttttit i 140
9.5 Method activation and synchronisation......................... 141
9.6 Reviewing COOLt 149
9.7 Furthermaterial 151
Exceptional ordering [*] 153
10.1 Abnormal exitmodel i 154
10.2 ContinUationSottt et et 156
10.3 Relating the approaches 156
10.4 Further materialot 157
Conclusions 159
11.1 Review of challenges 159
11.2 Capabilities of formal description methods 160

11.3 BNVOL. .ot e e e e 162

Contents Xi

A Simplelanguage 163
ALl CONCIELe SYNEAX . ..o vttt ettt ettt e et e e e 164
A2 ADSITACE SYNEAX . vttt ettt e et et e 165
A3 SeMANtICS . .o v ettt et 166
B Typedlanguage e 169
B.1 ADSLract SYNtaXvvuueitne et 170
B.2 Context conditionsoiiiiiiirnniian. 171
B3 Semantics 173
C Blockslanguage......... i 175
C.1 Auxiliary objectsttt 176
C.2 Programsiiinnt it e 177
C.3 Statementsttt ittt e 177
C.4 Simple Statementsuet ittt 178
C.5 Compound Statementso vvue ettt et ee e iie e 179
C.6 BlOCKS . .ttt 180
C.7 Call statementsouuimimiien i 181
C.8 EXPIessionsttt 183
D COOL ... 185
D.1 Auxiliary objectsottt e 186
D.2 EXPIessionsoouuuniettiit i 187
D3 Statementsiiiit e 188
D4 Methodsoouti e 190
D.S Classes .ottt e 195
D.6 Programs 198
E VDMnotation e 201
E.1 Logical operators.ooiuuiiiiiiiin e 201
E2 Setnotation i 202
E.3 List (sequence) NOtationuuueteuinnneeeeunnnnenann 203
E.4 Mapnotationuuiiiiinninneitiine e 204
E.5 Recordnotationc.ouuiniiineinineiineineennnns 205
E.6 Function notationc.uiiiiniinnneiineennnennnn 205
F Notes oninfluential people 207
References. i 211

	Preface
	Using this book
	Writing style
	Acknowledgements

	Contents

