Skip to main content

Semilattices of Punctual Numberings

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2020)

Abstract

The theory of numberings studies uniform computations for classes of mathematical objects. A large body of literature is devoted to investigations of computable numberings, i.e. uniform enumerations for families of computably enumerable sets, and the reducibility \(\le \) among these numberings. This reducibility, induced by Turing computable functions, aims to classify the algorithmic complexity of numberings.

The paper is inspired by the recent advances in the area of punctual algebraic structures. We recast the classical studies of numberings in the punctual setting—we study punctual numberings, i.e. uniform computations for families of primitive recursive functions. The reducibility \(\le _{pr}\) between punctual numberings is induced by primitive recursive functions. This approach gives rise to upper semilattices of degrees, which are called Rogers pr-semilattices. We prove that any infinite Rogers pr-semilattice is dense and does not have minimal elements. Furthermore, we give an example of infinite Rogers pr-semilattice, which is a lattice. These results exhibit interesting phenomena, which do not occur in the classical case of computable numberings and their semilattices.

The work was supported by Nazarbayev University Faculty Development Competitive Research Grants N090118FD5342. The first author was partially supported by the grant of the President of the Russian Federation (No. MK-1214.2019.1). The third author was partially supported by the program of fundamental scientific researches of the SB RAS No. I.1.1, project No. 0314-2019-0002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambos-Spies, K., Badaev, S., Goncharov, S.: Inductive inference and computable numberings. Theor. Comput. Sci. 412(18), 1652–1668 (2011). https://doi.org/10.1016/j.tcs.2010.12.041

    Article  MathSciNet  MATH  Google Scholar 

  2. Badaev, S., Goncharov, S.: Computability and numberings. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 19–34. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_2

    Chapter  Google Scholar 

  3. Badaev, S.A.: Computable enumerations of families of general recursive functions. Algebra Log. 16(2), 83–98 (1977). https://doi.org/10.1007/BF01668593

    Article  MathSciNet  MATH  Google Scholar 

  4. Badaev, S.A.: Minimal numerations of positively computable families. Algebra Log. 33(3), 131–141 (1994). https://doi.org/10.1007/BF00750228

    Article  MATH  Google Scholar 

  5. Badaev, S.A., Goncharov, S.S.: Theory of numberings: open problems. In: Cholak, P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and Its Applications, Contemporary Mathematics, vol. 257, pp. 23–38. American Mathematical Society, Providence (2000). https://doi.org/10.1090/conm/257/04025

  6. Badaev, S.A., Lempp, S.: A decomposition of the Rogers semilattice of a family of d.c.e. sets. J. Symb. Logic 74(2), 618–640 (2009). https://doi.org/10.2178/jsl/1243948330

  7. Bazhenov, N., Mustafa, M., Yamaleev, M.: Elementary theories and hereditary undecidability for semilattices of numberings. Arch. Math. Log. 58(3–4), 485–500 (2019). https://doi.org/10.1007/s00153-018-0647-y

  8. Bazhenov, N., Downey, R., Kalimullin, I., Melnikov, A.: Foundations of online structure theory. Bull. Symb. Log. 25(2), 141–181 (2019). https://doi.org/10.1017/bsl.2019.20

    Article  MathSciNet  MATH  Google Scholar 

  9. Case, J., Jain, S., Stephan, F.: Effectivity questions for Kleene’s recursion theorem. Theor. Comput. Sci. 733, 55–70 (2018). https://doi.org/10.1016/j.tcs.2018.04.036

    Article  MathSciNet  MATH  Google Scholar 

  10. Ershov, Y.L.: Enumeration of families of general recursive functions. Sib. Math. J. 8(5), 771–778 (1967). https://doi.org/10.1007/BF01040653

    Article  MATH  Google Scholar 

  11. Ershov, Y.L.: On computable enumerations. Algebra Log. 7(5), 330–346 (1968). https://doi.org/10.1007/BF02219286

    Article  MathSciNet  MATH  Google Scholar 

  12. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)

    Google Scholar 

  13. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory. Studies in Logic and the Foundations of Mathematics, vol. 140, pp. 473–503. North-Holland, Amsterdam (1999). https://doi.org/10.1016/S0049-237X(99)80030-5

  14. Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. J. Symb. Log. 23(3), 309–316 (1958). https://doi.org/10.2307/2964290

  15. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198 (1931). https://doi.org/10.1007/BF01700692

    Article  MathSciNet  MATH  Google Scholar 

  16. Goncharov, S.S.: Computable single-valued numerations. Algebra Log. 19(5), 325–356 (1980). https://doi.org/10.1007/BF01669607

    Article  MATH  Google Scholar 

  17. Goncharov, S.S.: Positive numerations of families with one-valued numerations. Algebra Log. 22(5), 345–350 (1983). https://doi.org/10.1007/BF01982111

    Article  MATH  Google Scholar 

  18. Goncharov, S.S., Lempp, S., Solomon, D.R.: Friedberg numberings of families of \(n\)-computably enumerable sets. Algebra Log. 41(2), 81–86 (2002). https://doi.org/10.1023/A:1015352513117

    Article  MathSciNet  MATH  Google Scholar 

  19. Goncharov, S.S., Sorbi, A.: Generalized computable numerations and nontrivial Rogers semilattices. Algebra Log. 36(6), 359–369 (1997). https://doi.org/10.1007/BF02671553

    Article  MathSciNet  MATH  Google Scholar 

  20. Herbert, I., Jain, S., Lempp, S., Mustafa, M., Stephan, F.: Reductions between types of numberings. Ann. Pure Appl. Logic 170(12), 102716 (2019). https://doi.org/10.1016/j.apal.2019.102716

    Article  MathSciNet  MATH  Google Scholar 

  21. Jain, S., Stephan, F.: Numberings optimal for learning. J. Comput. Syst. Sci. 76(3–4), 233–250 (2010). https://doi.org/10.1016/j.jcss.2009.08.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalimullin, I., Melnikov, A., Ng, K.M.: Algebraic structures computable without delay. Theor. Comput. Sci. 674, 73–98 (2017). https://doi.org/10.1016/j.tcs.2017.01.029

    Article  MathSciNet  MATH  Google Scholar 

  23. Khutoretskii, A.B.: On the cardinality of the upper semilattice of computable enumerations. Algebra Log. 10(5), 348–352 (1971). https://doi.org/10.1007/BF02219842

    Article  MathSciNet  Google Scholar 

  24. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)

    Google Scholar 

  25. Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspehi Mat. Nauk. 13(4), 3–28 (1958). (in Russian)

    MathSciNet  MATH  Google Scholar 

  26. Lachlan, A.H.: Standard classes of recursively enumerable sets. Z. Math. Logik Grundlagen Math. 10(2–3), 23–42 (1964). https://doi.org/10.1002/malq.19640100203

    Article  MathSciNet  MATH  Google Scholar 

  27. Lachlan, A.H.: On recursive enumeration without repetition. Z. Math. Logik Grundlagen Math. 11(3), 209–220 (1965). https://doi.org/10.1002/malq.19650110305

    Article  MathSciNet  MATH  Google Scholar 

  28. Mal’cev, A.I.: Positive and negative numerations. Sov. Math. Dokl. 6, 75–77 (1965)

    Google Scholar 

  29. Metakides, G., Nerode, A.: The introduction of nonrecursive methods into mathematics. In: The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981). Studies in Logic and the Foundations of Mathematics, vol. 110, pp. 319–335. North-Holland, Amsterdam (1982). https://doi.org/10.1016/S0049-237X(09)70135-1

  30. Ospichev, S.S.: Friedberg numberings in the Ershov hierarchy. Algebra Log. 54(4), 283–295 (2015). https://doi.org/10.1007/s10469-015-9349-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Podzorov, S.Y.: Arithmetical \(D\)-degrees. Sib. Math. J. 49(6), 1109–1123 (2008). https://doi.org/10.1007/s11202-008-0107-8

    Article  MathSciNet  Google Scholar 

  32. Pour-El, M.B.: Gödel numberings versus Friedberg numberings. Proc. Am. Math. Soc. 15(2), 252–256 (1964). https://doi.org/10.2307/2034045

    Article  MathSciNet  MATH  Google Scholar 

  33. Rogers, H.: Gödel numberings of partial recursive functions. J. Symb. Log. 23(3), 331–341 (1958). https://doi.org/10.2307/2964292

    Article  MATH  Google Scholar 

  34. Selivanov, V.L.: Two theorems on computable numberings. Algebra Log. 15(4), 297–306 (1976). https://doi.org/10.1007/BF01875946

    Article  MATH  Google Scholar 

  35. Uspenskii, V.A.: Systems of denumerable sets and their enumeration. Dokl. Akad. Nauk SSSR 105, 1155–1158 (1958). (in Russian)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of the research contained in this paper was carried out while the first and the last authors were visiting the Department of Mathematics of Nazarbayev University, Nur-Sultan. The authors wish to thank Nazarbayev University for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazhenov, N., Mustafa, M., Ospichev, S. (2020). Semilattices of Punctual Numberings. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics