
ar
X

iv
:1

91
0.

07
29

9v
4

 [
cs

.D
M

]
 1

1
Fe

b
20

20

On the complexity of acyclic modules in

automata networks

Kévin Perrot1, Pacôme Perrotin2, and Sylvain Sené1

1Université publique
2Aix-Marseille Univ., Univ. de Toulon, CNRS, LIS, UMR 7020,

Marseille, France

Abstract

Modules were introduced as an extension of Boolean automata net-
works. They have inputs which are used in the computation said modules
perform, and can be used to wire modules with each other. In the present
paper we extend this new formalism and study the specific case of acyclic
modules. These modules prove to be well described in their limit behav-
ior by functions called output functions. We provide other results that
offer an upper bound on the number of attractors in an acyclic module
when wired recursively into an automata network, alongside a diversity of
complexity results around the difficulty of deciding the existence of cycles
depending on the number of inputs and the size of said cycle.

1 Introduction

Automata networks (ANs) are a generalisation of Cellular automata (CAs).
While classical CAs require a n-dimensional lattice with uniform local func-
tions, ANs can be built on any graph structure, and with any function at each
vertex of the graph. They have been applied to the study of genetic regulation
networks [16, 25, 17, 8, 10] where the influence of different genes (inhibition,
activation) are represented by automata whose functions mirror together the
global dynamics of the network. This application in particular motivates the
development of tools to understand, predict and describe the dynamics of ANs
in an efficient way. In the worst case, studying the dynamics of an AN (i.e.
analysing the behavior of all possible configurations of the system) will always
take an exponential amount of time in the size of the network. Attempts using
mainly combinatorics have been made to predict and count specific limit behav-
ior of the system without enumerating the entire network’s dynamics [3, 11, 5].
Other studies focused on understanding the dynamics of such complex systems
by considering them as compositions of bricks simpler to analyse [6, 23, 9] and
propose to study manners of controlling these bricks and/or systems [7, 20]. In

1

http://arxiv.org/abs/1910.07299v4

line with such approaches and [13] the authors developed in [21] the formalism
of modules. They are ANs with inputs, and operators called wirings that allow
modules to be composed into larger modules, and eventually into ANs. In this
paper we propose an exploration of a specific type of modules, namely acyclic
modules, which do not include cycles in their interaction graph. The present
paper also introduces output functions, which characterise the behavior of an
acyclic module as a function of the inputs of the network over time. Output
functions allow us to characterise the dynamics of a network while forgetting
its inner structure, illustrated by Theorem 1, which shows that if two acyclic
modules have equivalent output functions, they also have isomorphic attractors.

In Section 2 we propose definitions of ANs, modules and wirings. Section 3
presents definitions of acyclicity in modules and related concepts and results.
Finally in Section 4 we explore complexity results around acyclic modules and
their inputs.

General notations. We denote B the set of Booleans B = {0, 1}. For Λ an
alphabet, we denote Λn the set of vectors of size n with values in Λ. For x ∈ Λn,
we might denote x by x1x2 . . . xn. For example, a vector x ∈ B

3 defined such
that x1 = 1, x2 = 0, x3 = 1 can alternatively be denoted by x = 101. For
S an ordered set of labels, x ∈ ΛS, s in S, and f a function which takes x

as an input, we might denote f(x) = s as a simplification of f(x) = xs. For
G a digraph, we denote by V (G) the set of its vertices and by A(G) the set
of its arcs. Let G,G′ be two digraphs, we denote G ⊆ G′ if and only if G is
an induced subdigraph of G′, that is V (G) ⊆ V (G′) and u, v ∈ V (G) implies
(u, v) ∈ A(G) ⇔ (u, v) ∈ A(G′). For f : A → B, and C ⊆ A, we denote f |C
the function defined over f |C : C → B such that f |C(x) = f(x) for all x ∈ C.
For x ∈ ΛS , for any function f : R → S (for some set R), we define x ◦ f as
(x ◦ f)r = xf(r), for all r ∈ R. For X = (x1, x2, . . . , xk) a sequence of xi ∈ ΛS ,
we define X ◦ f as the sequence (x1 ◦ f, x2 ◦ f, . . . , xk ◦ f). In most of our
examples, the alphabet Λ will be B and the set S finite, hence x ∈ ΛS will be
considered as a Boolean vector (according to some order on S).

2 Definitions

2.1 Automata networks

ANs are composed by a set S of automata. Each automaton in S, or node, is
at any time in a state in Λ. Gathering those isolated states into a vector of
dimension |S| provides us with a configuration of the network. More formally,
a configuration of S over Λ is a vector in ΛS . The state of every automaton
is bound to evolve as a function of the configuration of the entire network.
Each node has a unique function, called a local function that is predefined and
does not change over time. A local function is thus a function f defined over
f : ΛS → Λ. An AN is described as a set which provides a local function to

2

a

cb

000 001

100

010

101

011

110 111

Figure 1: (Left) Interaction digraph and of (right) dynamics of the network of
Example 2.1.

every node in the network. Formally, an automata network F is a set of local
functions fs over S and Λ for every s ∈ S.

Example 2.1. For Λ = B, and S = {a, b, c}, let F be a Boolean AN with local
functions fa(x) = ¬a, fb(x) = a ∨ ¬c, and fc(x) = ¬c ∧ ¬a.

The configuration of an AN is updated using the local functions. The proto-
col by which the local functions are applied is called its update schedule. Many
different update schedules exist (actually, there are an infinite number of these),
and it is well known that changing the update schedule of ANs can change the
obtained dynamics [22, 15, 4, 18]. The update schedule used in this paper is
the parallel update schedule, in which every node udpates its value according to
its local function at each time step. Thus, considering a configuration x of an
AN F , the update F (x) of F over x is the configuration such that for all s ∈ S,
F (x)s = fs(x), where fs is the local function assigned to s in F .

Example 2.2. Following the previous example, we can see that F (000) = 111,
F (010) = 111 and that F (111) = 010.

ANs are usually represented by the influence that automata hold on each
other. As such the visual representation of an AN is a directed graph, called an
interaction digraph, whose nodes are the automata of the network, and arcs are
the influences that link the different automata. Formally, s influences s′ if and
only if there exist two configurations x, x′ such that ∀r ∈ S, r 6= s ⇐⇒ xr = x′

r,
and F (x)s′ 6= F (x′)s′ . From this, we define the interaction digraph of F as the
directed graph with nodes S such that (s, s′) is an arc of the digraph if and only
if s influences s′. For instance the interaction digraph of the network developed
in Example 2.1 is depicted in Figure 1.

To encapsulate the entire behavior of the network, one needs to enumerate
all the possible configurations the network, namely the elements of ΛS, and
describe the global update function upon this set. This is often done via another
graphical representation, which is another digraph, called the dynamics of the
network. Intuitively, this graph defines an arc from x to x′ if and only if the
update of the network over the configuration x results in the configuration x′.
Formally, the dynamics of F can be represented as the digraph G with vertex
set ΛS , such that (x, x′) is an arc in G if and only if F (x) = x′. The dynamics
of the network developed in Example 2.1 is presented in Figure 1.

3

The dynamics of a network is a large object. A commonly studied part of
this object is called the attractors of the networks. An attractor is a sequence
of configurations which constitutes a cycle in the dynamics of the network.
Alternatively, the attractors of a network can be defined as the set of non trivial
strongly connected components of its dynamics. Formally, an attractor of F is
a connected component of the subdigraph GL ⊆ G, such that x is a node in
GL if and only if there exists k ∈ N \ {0} such that F k(x) = x. Notice that,
classically in the domain of ANs, An attractor of size one is called a fixed point,
whereas an attractor of size greater than one is called a limit cycle.

Example 2.3. In our example, the attractors of F are the configurations 010
and 111 since they verify F 2(010) = 010 and F 2(111) = 111. For any other
configuration, updating the network more than two times changes the state of
the network to 010 or 111. Alternatively, the configuration 010 and 111 form the
only non trivial strongly connected component of the dynamics of this network.

2.2 Modules

Informally, modules can be described as ANs with inputs. More formally, for
a given module, we introduce a new set of labels, usually denoted I, which
contains the inputs of the module. By convention, inputs will be denoted with
Greek letters. A local function of a module does not only depend on the states of
the automata of the network, but also on the evaluations of the inputs. Inputs
are not automata, and do not have a state; but it is interesting to suggest
that inputs are added nodes of the network that do not admit local functions.
Formally, by considering S and I as sets of labels, and Λ as an alphabet, a
module is a set which, for every s ∈ S, defines a local function fs : Λ

S∪I → Λ.

Example 2.4. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module
with local functions fa(x, i) = ¬b ∨ α, fb(x, i) = a ∨ ¬c ∨ β ∨ ¬α, and fc(x, i) =
¬c ∧ ¬γ.

The digraph representation of a module is similar to that of an AN; the
inputs are added for clarity as incident arrows to the nodes they influence. For
instance, the module of Example 2.4 is illustrated in Figure 3. As well, updating
a module over the parallel update schedule is similar to updating an AN. The
inputs are introduced with specific notations which are detailed below. Let x

and i be configurations over S and I respectively. The update of a module M

over x and i, denoted M(x, i), is defined as a configuration over S such that, for
all s ∈ S, M(x, i)s = fs(x, i), where fs is the local function assigned to s in M .

Example 2.5. Let us update the module M over the node configuration x =
011 and the input configuration i = 000. We compute fa(x, i) = ¬1 ∨ 0 =
0, fb(x, i) = 0 ∨ ¬1 ∨ 0 ∨ ¬0 = 1 and fc(x, i) = ¬1 ∧ ¬0 = 0, thus giving
M(011, 000) = 010.

Since it will be convenient to update a module over multiple iterations at
once, we will generally consider a sequence of input configurations of the form

4

a

cb

αα

β

γ

d eδ

a

cb

αα

β

γ

d e

Figure 2: Illustration of the wiring of Example 2.7. Interaction digraphs of the
modules (left) M , (center) M ′ and (right) M ′′.

(i1, i2, . . . , im). For α, β, . . . the inputs of the considered module, we will denote
for convenience α1, β1, . . . the evaluation of those inputs in the configuration
i1, and so on, denoting αk, βk, . . . the evaluation of the respective inputs in
the configuration ik. We will denote by M(x, (i1, i2, . . . , im)) the execution of
m updates of the module M starting with configuration x, taking the input
configuration ik at update number k. Formally, it is defined recursively as:

M(x, (i1, i2, . . . im)) = M(M(x, i1), (i2, . . . , im)), with M(x,∅) = x.

2.3 Wirings

Modules are a formalism of composition and decomposition of ANs. As such,
we define the process of composing modules together as wiring. Wirings exist in
two forms. One is recursive, and proposes the rearrangement of a single module
by connecting inputs of the module to itself. The second type of wiring is
non-recursive, and defines the combination of two modules into one, connecting
inputs of one module to the nodes of the other. When an input is connected, any
function depending on the value of that input relies on the state of the connected
node instead. Those two sorts of wirings were proven to be universal to compose
any network from elementary parts [21]. Wiring operations are defined upon
an object that specifies the operated connections, usually denoted ω which is a
partial function defined from a subset of inputs of the second module to nodes
of the first.

Recursive wiring. Let M be a module with label sets S and I which, for every
s ∈ S, defines the local function fs. For ω : I 9 S a partial function, we define
�ω M the module which, for every s ∈ S, defines the local function f ′

s such that:

∀x ∈ ΛS∪I\dom(ω), f ′
s(x) = fs(x◦ω̂), with ω̂(k) =

{

ω(k) if k ∈ dom(ω)
k if k ∈ S ∪ I \ dom(ω)

.

Example 2.6. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module
with local functions fa(x, i) = ¬b ∨ α, fb(x, i) = a ∨ ¬c ∨ β ∨ ¬α, and fc(x, i) =
¬c∧ ¬γ. Let us define a partial function ω : I → S such that dom(ω) = {α, γ},
and ω(α) = c and ω(γ) = a. The result of the recursive wiring �ω M is a

5

module with label sets S′ = S and I ′ = {β} with local functions f ′
a(x, i) = ¬b∨c,

f ′
b(x, i) = a ∨ ¬c ∨ β ∨ ¬c, and f ′

c(x, i) = ¬c ∧ ¬a.

Non-recursive wiring. Let M and M ′ be two modules with respective label
sets S, I, and S′, I ′. We denote fs and f ′

s′ the local functions defined respectively
in M and M ′ for every s ∈ S and s′ ∈ S′. For ω : I ′ 9 S a partial function, we
define M ֌ω M ′ the module with label sets S ∪ S′ and I ∪ I ′ \ dom(ω) which,
for every s ∈ S ∪ S′, defines the local function f ′′

s such that:

∀x ∈ ΛS , f ′′
s (x) =

{

fs(x|S∪I) if s ∈ S

f ′
s(x ◦ ω̂) if s ∈ S′

with ω̂(k) =

{

ω(k) if k ∈ dom(ω)
k if k ∈ S

,

for S = S ∪ S′ ∪ I ∪ I ′ \ dom(ω).

Example 2.7. For Λ = B, S = {a, b, c} and I = {α, β, γ}, let M be a module
with local functions fa(x, i) = ¬b ∨ α, fb(x, i) = a ∨ ¬c ∨ β ∨ ¬α, and fc(x, i) =
¬c ∧ ¬γ. Let also be S′ = {d, e}, I ′ = {δ} and M ′ another module with local
functions f ′

d(x, i) = ¬d ∨ e ∨ δ and f ′
e(x, i) = ¬e ∨ d. Let ω : I ′ → S be the

function such that ω(δ) = b. The result of the non-recursive wiring M ֌ω M ′

is the module with sets S′′ = {a, b, c, d, e} and I ′′ = {α, β, γ} with local functions
f ′′
a (x, i) = ¬b∨α, f ′′

b (x, i) = a∨¬c∨β∨¬α, f ′′
c (x, i) = ¬c∧¬γ, f ′′

d (x, i) = ¬d∨e∨b
and f ′′

e (x, i) = ¬e ∨ d. (See an illustration in Figure 2.)

3 Acyclicity

3.1 Acyclic automata networks

Acyclicity is a property of the interaction digraph of the considered AN; it
means that no node of the network influences itself, neither by a direct loop nor
through the action of any cycle that would include this node. Acyclic ANs have
been one of the first families of ANs to be studied and characterised [22]. Their
dynamical behavior is trivial: there is only one fixed point, which attracts every
other configuration. This is true under the parallel update schedule as well
as any other schedule which would eventually update every node a minimum
amount of time for the stabilisation to propagate. This early result led to the
simple conclusion that cycles are essential to the complexity of their dynamics.

3.2 Acyclic Modules

Acyclicity. A module M is acyclic if its interaction digraph is acyclic.

Example 3.1. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module
with local functions fa(x, i) = α, fb(x, i) = a∨β∨¬α, and fc(x, i) = ¬b∧a∧¬γ.
M is acyclic. (See an illustration in Figure 3.)

6

a

cb

αα

β

γ a

cb

αα

β γ

Figure 3: Interaction digraph of (left) the module of Example 2.4, (right) the
acyclic module of Example 3.1.

The dynamics of this family of objects is simple enough to be studied, and
complex enough to provide insights into the general dynamics of ANs. It is
indeed clear that every AN can be decomposed into a recursively wired acyclic
module. This can be done by taking a feedback arc set of the interaction digraph
of the network, and producing a module that replaces every arc in the set by
an input.

As an acyclic module has no loop or cycle in its influences, it can support no
long lasting memory used for computation. As such the behavior of any node
in the network can be understood as a function of only the evaluation of the
inputs in its last iterations. This function is called an output function and how
much it must look in the past to make its prediction is called the delay of the
function.

For M a module with k inputs, an output function O with delay m is a
function defined over a sequence of inputs (i1, i2, . . . , im). Each node of a net-
work defines its own output function, similarly to how it defines a local function.
The output function of a node always has minimal delay and will depend on
the output functions defined by the nodes which influence it. In other terms,
if node a influences node b, then whatever output function which predicts the
value of a based only on inputs will be useful to predict the evaluation of b one
iteration later. As such b does not directly depend on the output function of a,
but on the output function of a with incremented delay.

Output functions are sufficient to describe the behavior of the entire module
from the inputs after a given amount of time. This fact is illustrated by the
Property 3.1 below.
Node output. Let M be an acyclic module. For every s ∈ S, we define the
output function of s, denoted Os, as the output function with minimal delay m

such that for any sequence of inputs J = (i1, i2, . . . , im) and any configuration
x, M(x, J)s = Os(J).

Example 3.2. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module
with local functions fa(x, i) = α, fb(x, i) = a∨β∨¬α, and fc(x, i) = ¬b∧a∧¬γ.
The module M verifies the following output functions : Oa = α1, which has delay
1, Ob = α2 ∨ β1 ∨¬α1, which has delay 2, and Oc = ¬α3 ∧¬β2 ∧α2 ∧α2 ∧¬γ1,
which has delay 3.

Property 3.1. Let M be an acyclic module. For every s ∈ S, s has one and
only one output function Os.

7

Proof. We first claim that there always exist an output function for any node:

Claim 3.1. Let M be an acyclic module with k inputs. For every s ∈ S, there
exists an output function Os with delay m which for any sequence of inputs
J = {i1, i2, . . . , im} and any initial configuration x verifies M(x, J)s = Os(J).

Let us define the incrementation of an output function.

Output function incrementation. Let O be an output function of delay m.
The incrementation of O is the output function of delay m + 1 denoted O+1

such that O+1(i1, i2, . . . , im+1) = O(i2, i3, . . . , im+1) for any sequence of input
configurations (i1, i2, . . . , im+1).

To prove 3.1, see that M is an acyclic module, therefore there exists a node
s ∈ S such that s is not influenced by any node in S (but possibly by some
inputs). As a consequence, there exists an output function Os which simply
equals fs, and has a delay of js = 1. Now for the induction, consider the
module M without some set of nodes S′ ⊂ S such that for each node s′ ∈ S′

we have already defined an output function Os′ with delay js′ . Since it is still
acyclic there exists a node s ∈ S \ S′ such that s is not influenced by any node
in S \S′ (but possibly by some inputs and some nodes in S′). As a consequence,
there exists an input function Os which computes the local function fs, replacing
the evaluation of any node s′ ∈ S′ by the incrementation of the output function
Os′ , and has a delay of js = 1 +max{js′ | s

′ ∈ S′}.
We now make the following claim:

Claim 3.2. Let M be an acyclic module. Let s ∈ S, and Os and O′
s be two

output functions with respective delays m and m′ such that for any two sequences
of inputs J, J ′ of size m and m′ respectively and any initial configuration x,
M(x, J)s = Os(J) and M(x, J ′)s = O′

s(J). If m = m′, then Os = O′
s.

To see this is true, suppose m = m′. This implies that J and J ′ are of
the same size. For any J such that J = J ′, we verify Os(J) = M(x, J)s =
M(x, J ′)s = O′

s(J
′) = O′

s(J). Therefore Os = O′
s.

We conclude by stating that any two different minimal output function for
s would provide a contradiction with claim 3.2.

Property 3.1 can be further refined to propose the following result, which
states that two networks have the same attractors if and only if the modules they
can be decomposed into have the same number of inputs and the same output
functions on the nodes on which those inputs are wired. As such, modules can
be considered as black boxes which are to be considered equivalent in their limit
behavior, as long as they share the same output functions, according to some
bijection between their inputs.

Theorem 1. Let M and M ′ be two acyclic modules, with T and T ′ subsets of
their nodes such that |T | = |T ′|. If there exists g a bijection from I to I ′ and

8

h a bijection from T to T ′ such that for every s ∈ T , Os and O′
h(s) have same

delay, and for every input sequence J with length the delay of Os,

Os(J) = O′
h(s)(J ◦ g−1)

then for any function ω : I → T , the networks �ω M and �h◦ω◦g−1 M ′ have
isomorphic attractors (up to the renaming of automata given by h).

Proof. First remark that ω has domain I hence it wires all inputs of M and
therefore �ω M is an automata network with a dynamics and attractors. Fur-
thermore g is a bijection from I to I ′ hence the same applies to �h◦ω◦g−1 M ′.
Let us denote F =�ω M and F ′ =�h◦ω◦g−1 M ′ for simplicity, with G and G′

the dynamics restricted to their respective attractors. We want to show that G
and G′ are isomorphic.

For x ∈ ΛS , we define the input sequence of length k generated by x, denoted
Ĵ(x)k, as the sequence which verifies

Ĵ(x)kℓ = F ℓ−1(x)|T ◦ ω, for 1 ≤ ℓ ≤ k.

Intuitively, the sequence Ĵ(x)k records the evaluation of the network’s outputs
on T , over k consecutive updates, starting with configuration x.

Claim 3.3. Let k be such that ∀s ∈ S with ds ≤ k, for ds the delay of the
output function Os in M . For J an input sequence of length k, the evaluation
of M(x, J) is always the same, regardless of the starting configuration x ∈ ΛS.

To see that this is true, apply Property 3.1 and consider that M(x, J)s =
Os(J), for every s ∈ S. This computation is properly defined as per the defini-
tion of the length of J . It follows that the computation of M(x, J) only depends
on J . Based on this fact, we will denote M(x, J) = M(J) in the rest of this
demonstration when applicable, that is, when no output function of M has a
delay greater than k.

Claim 3.4. Let J be an input sequence of length k such that the configuration
M(J) is defined. Ĵ(M(J))k = J ⇒ M(J) ∈ V (G).

This Claim states that if the configuration M(J), which is obtained by up-
dating any configuration x in M with the input sequence J , generates the input
sequence J , then M(J) is a configuration which belongs to an attractor of F .

Let us denote x = M(J). By hypothesis, Ĵ(x)k = J . It follows that:

F k(x) =F (F k−1(x)) = M(F k−1(x), F k−1(x)|T ◦ ω)

=M(M(. . .M(x, F 0(x)|T ◦ ω) . . . , F k−2(x)|T ◦ ω), F k−1(x)|T ◦ ω)

=M(M(. . .M(x, Ĵ(x)k1) . . . , Ĵ(x)
k
k−1), Ĵ(x)

k
k)

=M(x, Ĵ(x)k) = M(x, J) = M(J) = x

which implies that F k(x) = x and x is part of an attractor which length divides
k, hence the Claim holds.

9

Claim 3.5. Let x ∈ V (G). There exists x′ ∈ V (G′) such that Ĵ(x)k ◦ g−1 =
Ĵ(x′)k, for every k ∈ N.

This Claim implies that, for any configuration x in an attractor of F , there
exists a configuration x′ in an attractor of F ′ which generates an input sequence
Ĵ(x′)k equivalent to the input sequence Ĵ(x)k up to the bijection g, and that
holds for any length k.

To prove it, consider x ∈ V (G) and let us take k greater than the the delay
of any output function in M and M ′; and such that F k(x) = x. We consider the
input sequences Ĵ(x)k and Ĵ(x)k ◦ g−1. Claim 3.3 implies that M ′(Ĵ(x)k ◦ g−1)
is a well defined configuration over M ′, which we shall denote x′. Let us prove
that Ĵ(x)k ◦ g−1 = Ĵ(x′)k. By definition we know that

Ĵ(x)k1 ◦ g−1 = F 0(x)|T ◦ ω ◦ g−1 = x|T ◦ ω ◦ g−1

while

Ĵ(x′)k1 = F ′0(x′)|T ′ ◦ h ◦ ω ◦ g−1 =x′|T ′ ◦ h ◦ ω ◦ g−1

=M ′(Ĵ(x)k ◦ g−1)|T ′ ◦ h ◦ ω ◦ g−1.

Let us note that for any s′ ∈ T ′, M ′(Ĵ(x)k ◦ g−1)s′ = O′
s′(Ĵ(x)

k ◦ g−1) which

equals Oh−1(s′)(Ĵ(x)
k) by the hypothesis of the Theorem. It follows that

M ′(Ĵ(x)k ◦ g−1)|T ′ ◦ h = M(Ĵ(x)k)|T ◦ h−1 ◦ h = x|T

and this implies that

Ĵ(x′)k1 = x|T ◦ ω ◦ g−1 = Ĵ(x)k1 ◦ g−1

therefore Ĵ(x)k1 ◦ g−1 = Ĵ(x′)k1 .
This marks the first step of the induction to prove Ĵ(x)k ◦g−1 = Ĵ(x′)k. Let

us state the induction hypothesis that

Ĵ(x)k[1,ℓ] ◦ g
−1 = Ĵ(x′)k[1,ℓ], for ℓ < k.

We now prove that it implies Ĵ(x)k[1,ℓ+1] ◦ g−1 = Ĵ(x′)k[1,ℓ+1]. To prove it, we

only need to prove Ĵ(x)kℓ+1 ◦ g
−1 = Ĵ(x′)kℓ+1. Let · denote the concatenation of

two sequences. We know that

Ĵ(x)kℓ+1 ◦ g
−1 =F ℓ(x)|T ◦ ω ◦ g−1

=M(x, Ĵ(x)k[1,ℓ])|T ◦ ω ◦ g−1

=M(M(Ĵ(x)k), Ĵ(x)k[1,ℓ])|T ◦ ω ◦ g−1

=M(Ĵ(x)k · Ĵ(x)k[1,ℓ])|T ◦ ω ◦ g−1

10

and

Ĵ(x′)kℓ+1 =F ′ℓ(x′)|T ′ ◦ h ◦ ω ◦ g−1

=M ′(x′, Ĵ(x′)k[1,ℓ])|T ′ ◦ h ◦ ω ◦ g−1

=M ′(x′, Ĵ(x)k[1,ℓ] ◦ g
−1)|T ′ ◦ h ◦ ω ◦ g−1

=M ′(M ′(Ĵ(x)k ◦ g−1), Ĵ(x)k[1,ℓ] ◦ g
−1)|T ′ ◦ h ◦ ω ◦ g−1

=M ′((Ĵ(x)k ◦ g−1) · (Ĵ(x)k[1,ℓ] ◦ g
−1))|T ′ ◦ h ◦ ω ◦ g−1

=M ′((Ĵ(x)k · Ĵ(x)k[1,ℓ]) ◦ g
−1)|T ′ ◦ h ◦ ω ◦ g−1.

As the sequence (Ĵ(x)k · Ĵ(x)k[1,ℓ]) ◦ g
−1 is at least of length k, we can use it to

compute the result of output functions. From the hypothesis of the Theorem it
follows that for every s′ ∈ T ′,

M ′((Ĵ(x)k · Ĵ(x)k[1,ℓ]) ◦ g
−1)s′ =O′

s′ ((Ĵ(x)
k · Ĵ(x)k[1,ℓ]) ◦ g

−1)

=Oh−1(s′)(Ĵ(x)
k · Ĵ(x)k[1,ℓ])

=M(Ĵ(x)k · Ĵ(x)k[1,ℓ])h−1(s′)

which, using again the hypothesis of the Theorem to relate M and M ′, implies

Ĵ(x′)kℓ+1 =M ′((Ĵ(x)k · Ĵ(x)k[1,ℓ]) ◦ g
−1)|T ′ ◦ h ◦ ω ◦ g−1

=M(Ĵ(x)k · Ĵ(x)k[1,ℓ])T ◦ h−1 ◦ h ◦ ω ◦ g−1

=M(Ĵ(x)k · Ĵ(x)k[1,ℓ])T ◦ ω ◦ g−1

=Ĵ(x)kℓ+1 ◦ g
−1

and concludes the induction, therefore Ĵ(x)k ◦ g−1 = Ĵ(x′)k. It follows that
Ĵ(M ′(Ĵ(x)k ◦ g−1))k = Ĵ(x′)k = Ĵ(x)k ◦ g−1, which implies by Claim 3.4 that
x′ ∈ V (G′), and that x′ is in an attractor which size divides k, just like x.
This concludes our proof of Claim 3.5 for k big enough, but remark that as a
consequence it holds for any k ∈ N.

Observe a symmetric sequence of arguments to prove that for every x′ ∈
V (G′), there exists x ∈ V (G) such that Ĵ(x′)k ◦ g = Ĵ(x)k. It follows that for
any x ∈ V (G), there exists a unique x′ ∈ V (G′) such that the above relation
holds. This is true since if there existed x′, x′′ ∈ V (G′) such that Ĵ(x)k ◦
g−1 = Ĵ(x′)k, Ĵ(x)k ◦ g−1 = Ĵ(x′′)k, and x′ 6= x′′, then it would follow that
Ĵ(x′)k = Ĵ(x)k ◦ g−1 = Ĵ(x′′)k ◦ g ◦ g−1 = Ĵ(x′′)k. Since x′, x′′ ∈ V (G′), for a
large enough k multiple of the sizes of the attractors containing x′ and x′′, we
would have x′ = M ′(Ĵ(x′)k) = M ′(Ĵ(x′′)k) = x′′, a contradiction.

Let us therefore denote ĥ : V (G) → V (G′) the bijection which to any x ∈
V (G) associates x′ ∈ V (G′) such that Ĵ(x)k ◦ g−1 = Ĵ(x′)k. This implies that

ĥ(x) = M ′(Ĵ(x)k ◦ g−1), for k larger than the delay of any output function in

M and M ′, and multiple of the size of the attractors which contain x and ĥ(x).

11

Let us prove that ĥ is an isomorphism from G to G′. We need to prove that,
for any x ∈ V (G), ĥ(F (x)) = F ′(ĥ(x)).

Let x ∈ V (G) and k a multiple of the length of the attractor x is part of,
such that k is greater than any delay of any output function in both M and M ′.
It follows that

ĥ(F (x)) =M ′(Ĵ(F (x))k ◦ g−1)

=M ′((F 0(F (x))|T ◦ ω, F 1(F (x))|T ◦ ω, . . . , F k−1(F (x))|T ◦ ω) ◦ g−1)

=M ′((F 1(x)|T ◦ ω, F 2(x)|T ◦ ω, . . . , F k(x)|T ◦ ω) ◦ g−1)

=M ′((F 1(x)|T ◦ ω ◦ g−1, F 2(x)|T ◦ ω ◦ g−1, . . . , F k(x)|T ◦ ω ◦ g−1)).

Let us consider an individual element of the above sequence, F ℓ(x)|T ◦ ω ◦ g−1.
It follows that for every s ∈ S,

F ℓ(x)s =M(x, Ĵ(x)ℓ)s

=M(M(Ĵ(x)k), Ĵ(x)ℓ)s

=M(Ĵ(x)k · Ĵ(x)ℓ)s

=Os(Ĵ(x)
k · Ĵ(x)ℓ)

=O′
h(s)((Ĵ(x)

k · Ĵ(x)ℓ) ◦ g−1)

=M ′((Ĵ(x)k · Ĵ(x)ℓ) ◦ g−1)h(s)

=M ′(M ′(Ĵ(x)k ◦ g−1), Ĵ(x)ℓ ◦ g−1)h(s)

=M ′(ĥ(x), Ĵ(x)ℓ ◦ g−1)h(s)

=F ′ℓ(ĥ(x))h(s)

which implies that F ℓ(x)|T ◦ ω ◦ g−1 = F ′ℓ(ĥ(x))|T ′ ◦ h ◦ ω ◦ g−1. This, applied
to the previous development, gives

ĥ(F (x)) =M ′((F ′1(ĥ(x))|T ′ ◦ h ◦ ω ◦ g−1, F ′2(ĥ(x))|T ′ ◦ h ◦ ω ◦ g−1, . . .

. . . , F ′k(ĥ(x))|T ′ ◦ h ◦ ω ◦ g−1))

=M ′(Ĵ(F ′(ĥ(x))))

=F ′(ĥ(x))

and concludes the proof of the Theorem.

Output functions are a characterisation of the behavior of acyclic modules
which is enough to understand their limit dynamics under parallel schedule.
This characterisation behaves in expected ways under non-recursive wirings.
Taking two acyclic modules and wiring them non-recursively makes a module
whose output functions are deducible from the output functions of the initial
acyclic module. We now state a result which provides an upper bound on the
number of attractors of each size of an AN, which is wired from a module with
k inputs.

12

Theorem 2. Taking an acyclic module with k inputs and wiring all inputs
recursively gives an AN. Let us denote a(k, c) the number of attractors of size c

of its dynamics. We state a(k, c) ≤ A(k, c), with:

A(k, 1) = |Λ|k and A(k, c) = |Λ|kc −
∑

c′<c, c′|c

A(k, c′).

Proof. Let us consider an acyclic module M with k inputs. Consider a wiring ω

over M such that dom(ω) = I, for I the set of k inputs of M . Finally consider
the dynamics of the Automata Network F =�ω M . Let us denote ω(I) and call
output set the set defined ω(I) = {ω(α) | α ∈ I}. We remark the following fact
:

|ω(I)| ≤ |I| = k (1)

Let us consider an attractor X = {x1, x2, . . . , xc} over F . By definition
F (xi) = xi+1 for i < c and F (xc) = x1. For R ⊆ S, and x a vector over S with
values in Λ, we define x|R the projection of this vector over R. By extension,
X |R denotes the projection of the attractor X . Provided another such attractor
X ′ of same size, we make the following claim.

Claim 3.6. X |ω(I) = X ′|ω(I) ⇒ X = X ′.

To see this is true, let us assume that X |ω(I) = X ′|ω(I). Since M is acyclic
by definition, we know that there exists a non empty set of nodes S1 ⊆ S such
that every s ∈ S1 is only influenced by inputs and not by any other node. This
means that assuming X |ω(I) = X ′|ω(I) implies X |ω(I)∪S1

= X ′|ω(I)∪S1
. Now

consider that, after the same acyclicity hypothesis, there exists a non-empty set
S2 ⊆ S of nodes which are only influenced by inputs, and nodes in S1, which
implies X |ω(I)∪S1∪S2

= X ′|ω(I)∪S1∪S2
. The claim follows by induction.

This claim allows us to prove that there can only be as many attractors of
size c in F as there is distinct X |ω(I). This provides us with a weaker form of
the result:

a(k, c) ≤ |Λ|kc (2)

Let X be one of the |Λ|kc possible sequence of c configurations. Let us assume
that F (xi) = xi+1 for i < c and F (xc) = x1. By definition, if there exists i, j

such that i 6= j and xi = xj , the sequence X will be periodic. This implies
the existence of a smaller sequence X ′ such that X = X ′q for q ∈ N. In
other words, for every possible proper attractor X ′ such that the size of X ′

divides c, there exists a sequence X = X
′ c

|X′| which is not an attractor of F by
definition. Using this fact and 2, we conclude that a(c, k) is not greater than
|Λ|kc −

∑

c′<c,c′|cA(k, c
′).

The smallest k which can be provided for any AN is equal to the minimum
feedback arc set of the network. As such this result is very similar to a previous
result of [3, 5], which states an upper bound on the total number of attractors

13

a

b

c

d

α

α

α

= ¬α

= ¬α ∨ ¬a

= a ∧ b ∧ d

= α ∨ a

a

b

cα

= α

= a

= a ∧ b

Figure 4: Illustration of Theorem 3. Both modules consider c as their output
node, and display the same output function O = α2 ∧ α3. The module on the
right is optimal, as 3 is the delay of its output function.

depending on the size of a positive feedback arc set. Though the global bound
with a positive feedback arc set would be stronger, the present result is different
as it operates on parallel update schedule and provides different bounds on
different sizes of attractors, where the previous result offered a bound on the
total count of attractors under asynchronous update schedule.

3.3 One-to-one modules

A module with only one input has the particularity of being recursively wired
in a linear amount of possible ways. That is, the only degree of freedom in the
wiring is the choice of the node which will serve as output. Let us consider a
module with only one input, and let us consider e ∈ S as the designated output
node of the module. In this context we will denote � M as the AN obtained
by wiring the input of the module to its designated output. Furthermore, the
output function Oe will sometimes be denoted O, as the designated output
function of the module. Such an acyclic module with only one input and a
designated output is called a one-to-one module.

Theorem 3. Let M be a one-to-one module. The one-to-one module Mmin

with a minimum number of nodes and which defines the same output function
as M is of size d, for d the delay of the output function of M .

Proof. First we can prove that we cannot construct a module with a size smaller
than the delay of its output function. This is easily shown as there need to be
a line of at least d in size in the network’s interaction digraph.

To prove that such a minimal network always exists, simply construct it by
using d − 1 nodes as a line which offers the input’s value delays from 2 to d.
The last node computes the desired output function and takes the values from
the input directly for a delay of 1, or from the rest of the network for a delay
from 2 to d.

An example of the application of Theorem 3 is illustrated in Figure 4. This
construction is polynomial in time, and bears strong resemblances with the
objects known as Feedback Shift Registers [12].

14

4 Complexity Results

This section presents complexity results that have been obtained around out-
put functions, and the difficulty of the analysis of the dynamics of acyclic
modules after being recursively wired into a complete network. Remark that
these questions have been widely addressed in the context of threshold Boolean
ANs [2, 14, 19]. Such a wiring will sometimes be denoted as a complete recur-
sive wiring of the module. A module is encoded into the input of a decision
problem as the list of its local functions written in propositional logic. As such
the computation of the output functions of an acyclic module is comparable to
the computation of a circuit.

Let us provide a few decision problems on the dynamics of a network obtained
from a recursively wired acyclic module.

◮ Acyclic Module Attractor Problem

Input: An acyclic module M with k inputs and n nodes, a function
ω which defines a complete recursive wiring over M , and a
number c encoded in unary.

Question: Does there exist an attractor of size c in the dynamics of
�ω M?

◮ One-to-one Module Attractor Problem

Input: A one-to-one module M with n nodes, a function ω which
defines a complete recursive wiring over M , and a number c
encoded in unary.

Question: Does there exist an attractor of size c in the dynamics of
�ω M?

◮ Acyclic Module Fixed Point Problem

Input: An acyclic module M with k inputs and n nodes, and a func-
tion ω which defines a complete recursive wiring over M .

Question: Does there exist a configuration x such that �ω M(x) = x?

◮ One-to-one Module Fixed Point Problem

Input: A one-to-one moduleM with n nodes, and a function ω which
defines a complete recursive wiring over M .

Question: Does there exist a configuration x such that �ω M(x) = x?

Those four problems are variations of the same question under different
sets of constraints. The first problem, the Acyclic Module Attractor Problem,
generalises the other three decision problems, while the One-to-one Module
Fixed Point Problem is a specific case of the other three decision problems. We
provide our complexity analysis of those problems in a way that mirrors this
diamond-like structure.

Theorem 4. The Acyclic Module Attractor Problem can be solved in time
O(f(k × c)q(n)) for some function f and q a polynomial, i.e. it is fixed pa-
rameter tractable.

15

Proof. We construct an algorithm which iterates all of the possible input se-
quences of size c. We then execute the network on each sequence and check
if the outputs correspond to the given input. This process scales polynomially
with the size of the network, but exponentially with the size of the attractor
and the number of inputs.

Formally, this algorithm checks all of the |Λ|k×c possible sequences of input
configurations for k inputs and of length c. To check if an input configuration
J describes an attractor of size c in �ω M , simply update module M with an
input sequence composed as the repetition of the sequence J until the obtained
sequence is at least as long as the largest delay in an output function of M . An
attractor in �ω M will be obtained if for every input α, the sequence of values
of the node ω(α) over time is identical to the sequence of values of the input
α. This procedure only requires in the worst case the evaluation of the entire
network c times and k checks at each step, which is polynomial in n× k × c.

Similarly, every possible attractor of size c in �ω M has a corresponding
input sequence inM . To see that this is true, simply construct an input sequence
J which for every input α defines the i-th evaluation of input α as the evaluation
of node ω(α) in the i-th configuration of the attractor.

By checking every possible input sequence for k inputs and of length c, we
conclude on the existence of an attractor of size c in �ω M . This algorithm
is of complexity O(|Λ|k×cr(n × k × c)), for r a polynomial, which implies that
there exists f a function and q a polynomial such that the complexity of this
algorithm is O(f(k × c)q(n)).

Theorem 5. The One-to-one Module Attractor Problem is NP-complete.

Proof. In this proof we provide a reduction from the SAT problem which for
any formula with m variables, constructs a module of size 3m+1. The first 3m
nodes encode the input and the last node checks the evaluation. If at any point
the formula is evaluated at false or if the encoding is wrong, the whole network
stabilises to a fixed point. If the encoding is correct and the evaluation positive,
the configuration will shift in the network, providing an attractor of size 3m+1.
The existence of this attractor is proven equivalent to the satisfiability of the
formula.

First see that this problem is in NP as, providing any configuration, we can
verify that it is part of a cycle of size c by updating the network c times (each
update requires to evaluate n local functions) and making at most c comparisons
per step, for an overall polynomial time in the input size.

To prove that the problem is NP-hard, we present a reduction from the SAT
problem. Given a formula f on m variables v1, . . . , vm, we will construct a one-
to-one module on m + e + 1 nodes (for some e upper bounded by a constant)
such that, when the output is wired to the input, there exists a cycle of size
c = m+ e+ 1, if and only if there exists a valuation satisfying f .

The one-to-one module, denoted M , is composed of two parts. The first
part is a shifting tape, which is composed of m + e nodes t1, . . . , tm+e with e

the smallest number such that m + e + 1 is a prime number (the value of e is

16

t1 t2 t3 . . . tm tm+1 . . . tm+e

q

Figure 5: Module M in the proof of Theorem 5. If f has a satisfying valuation
then node q can let the shifting tape of size m + e become a rotating tape of
size m + e + 1, otherwise fq evaluates to 0 and any configuration converges to
the fixed point 0m+e+1.

at most 2m according to the Bertrand–Chebyshev theorem [24], and one can
find it in polynomial time thanks to the well-known algorithm from [1]). For
1 < k ≤ m+ e we define the local functions ftk(x) = tk−1, and ft1(x) = α with
α the only input of the network. For i ∈ {1, . . . ,m} the state of node ti encodes
the evaluation of variable vi.

The second part of the network is composed of a unique node denoted q,
the output node to be wired to input α, which has the role of either letting the
shifting tape of size m+ e become a shifting tape of size m+ e+1, or stopping
the process and make the configuration converge to 0m+1. Its local function is:

fq(x) =















xtm+e
if nodes t1, . . . , tm of the shifting tape encode

a valuation satisfying f

or a shift may encode a valuation satisfying f ,
0 otherwise.

Since module M is acyclic node q cannot know its own state, but it knows the
state of all other nodes. Therefore the second condition of the disjunction is
checked as follows: node q tries, for xq = 0 and for xq = 1, and for any k from 1
to m+e, whether cyclically shifting the configuration (considering that q follows
tm+e and preceeds t1) by k units can give a shifting tape encoding a valuation
satisfying f on the states of nodes t1, . . . , tm; if any combination of state for
xq and shift k gives a shifting tape encoding a valuation satisfying f then the
condition “a shift may encode a valuation satisfying f” is true.

This construction is illustrated in Figure 5. It has polynomial size, as the
local functions of the c = m+ e+ 1 nodes can be expressed with propositional
formulas of size polynomial in f and m+ e (naively for fq with a disjunction of
m+ e+ 1 terms, each containing a copy of f).

If f has a satisfying valuation, then some configuration x encoding this
valuation on nodes t1, . . . , tm of the shifting tape belongs to a cycle of size c.
Indeed, in this case x is cyclically shifted by one unit at each step along the
c = m+ e+ 1 nodes of � M , and by taking xq 6= x1 configuration x cannot be

a fixed point therefore m+ e + 1 prime implies that F c′(x) 6= x for all c′ < c.

17

If f has no statisyfing valuation, then fq(x) = 0 for any x and � M has only
one attractor which is a fixed point, 0m+e+1.

Theorem 6. The Acyclic Module Fixed Point Problem is NP-complete.

Proof. This proof provides a reduction from the SAT problem. In this reduction,
the obtained module will stabilise only if a given node, which computes a SAT
formula, has constant value 1.

First see that this problem is in NP since, given any configuration, verifying
that it is a fixed point can be done by updating the whole network once, which
is done in polynomial time in the size of its encoding.

To see this problem as NP-hard we present a reduction from the SAT prob-
lem. given a formula f , we construct a module with one node for each variable
in f . Each of these nodes are wired to themselves by the wiring ω, forming
identity local functions of the form fa(x) = a. Then we add two other nodes
to the module. One, named solver, computes f from the states of nodes cor-
responding to variables. The second, named oscillator, has local function
foscillator(x) = ¬solver ∧ ¬oscillator. This is constructed via an input
which is wired onto oscillator by ω.

Every node except solver and oscillator have a fixed state, therefore
the existence of a fixed point only depends on the evaluation of solver and
oscillator. The solver node has a fixed state after one iteration, correspond-
ing to the evaluation of formula f according to the states of variables nodes.
Consequently the existence of a fixed point only depends on the behavior of the
oscillator node, which by definition will oscillate as long as the evaluation of
the solver node is 0. We conclude that the existence of a fixed point in the AN
obtained by wiring this module according to ω is equivalent to the existence of
a positive evaluation of the formula f . This construction being polynomial in
the size of the formula, we conclude that the problem is NP-hard.

Corollary 4.1. The One-to-one Module Fixed Point Problem is in P.

Proof. This is an application of Theorem 4.

The above stated results imply that the size of the network is not a mean-
ingful parameter in the difficulty of the task of finding attractors. Thereom 4
shows that the two parameters which apply this effect are the size of the desired
attractor and the number of inputs the network bears when seen as an acyclic
module. In other terms this second parameter is the level of interconnectivity
of the network. Theorems 5 and 6 prove that this caracterisation is tight. To-
gether, these four theorems provide a new perspective on a known fact; that
cycles in ANs are crucial for complexity to arise.

18

◮ Acyclic Module Output Construction Problem

Input: A set {M1,M2, . . . ,Mℓ} of acyclic modules, and O an output
function encoded in a lookup table.

Question: Does there exist a set of non-recursive wirings ω which can
construct an acyclic module from M1,M2, . . . ,Mℓ such that
O is an output function of the obtained module?

Theorem 7. The Acyclic Module Output Construction Problem is NP-complete.

Proof. We provide a reduction from the SAT problem. We ask for the construc-
tion of an output function via the wiring of two modules with a unique constant
function ‘0’ and ‘1’ respectively, and a bigger module which executes a computa-
tion from its inputs based on the formula, such that the target output function
is obtained by non-recursive wirings if and only if the formula is satisfiable.

This decision problem is in NP since, given the non-recursive wiring and the
node which carries the target output function, the verification can be done in
polynomial time. Note that the target output function is provided as a lookup
table, and that checking the egality of two functions given as lookup tables can
be done in a single pass, which is polynomial in time.

To prove that this problem is NP-hard, take a SAT formula f , and construct
the following instance of the present decision problem: the set of modules is
{M0,M1,Mf}. Modules M0 and M1 have no input and only one node whose
function is the constant 0 and 1 respectively. The module Mf has as many
inputs as the formula f as variables, plus one denoted α, and only one node
which computes f ∧ α using inputs corresponding to variables to compute f .
The target output function O is the identity (on one input) with delay 1.

For this instance to be positive, there has to be some wirings reducing the
function f ∧α to the identity (modules M0 and M1 have no input hence cannot
produce O), meaning that the formula is satisfiable: either α is not wired and f

reduces to 1; or α is wired (to 1) and f reduces to the identity on one variable,
hence evaluating this last variable to 1 satisfies f .

Conversely, if f is satisfiable then wiring inputs corresponding to variables
according to a satisfiable assignment reduces the local function of module Mf

to α, i.e. this node has the target output function O.

5 Conclusion

Automata Networks are complex systems, the exhaustive study of which requires
an amount of resources exponential in the size of the network. By defining and
studying acyclic modules we propose an innovative way of approaching this
question. Theorem 1 proposes the reduction of the limit dynamic of a network
to the output functions of an acyclic module which composes it. We think
that this result, alongside with Theorem 3 which is a direct application of it,
provides an interesting way of categorising networks depending on their output
functions. Also presented are Theorem 2 which proposes a bound on the total

19

number of attractors depending on the number of inputs in an acyclic module,
and the results listed in Section 4, which state a range of complexity results
on acyclic modules. The set of results proposed in this paper describe, in our
opinion, a good picture of the limits and possibilities that come from studying
acyclic modules.

In future works, we plan to expand this formalism to more general update
schedules, and to propose a version of Theorem 3 which would generalise to
modules with more than one input and one output. We also plan to apply those
tools to optimise large automata networks, such as those designed and studied
in biology applications.

Acknowledgments. The works of Kévin Perrot and Sylvain Sené were funded
mainly by their salaries as French State agents, affiliated to Aix-Marseille Univ.,
Univ. de Toulon, CNRS, LIS, UMR 7020, Marseille, France (both) and to
Univ. Côte d’Azur, CNRS, I3S, UMR 7271, Sophia Antipolis, France (KP), and
secondarily by ANR-18-CE40-0002 FANs project, ECOS-Sud C16E01 project,
STIC AmSud CoDANet 19-STIC-03 (Campus France 43478PD) project.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. Math. (2),
160(2):781–793, 2004.

[2] N. Alon. Asynchronous threshold networks. Graphs and Combin., 1:305–310,
1985.

[3] J. Aracena. Maximum number of fixed points in regulatory Boolean networks.
Bull. Math. Biol., 70:1398–1409, 2008.

[4] J. Aracena, Luis Gómez, and L. Salinas. Limit cycles and update digraphs in
Boolean networks. Discr. Appl. Math., 161:1–12, 2013.

[5] J. Aracena, A. Richard, and L. Salinas. Number of fixed points and disjoint cycles
in monotone Boolean networks. SIAM J. Discr. Math., 31:1702–1725, 2017.

[6] G. Bernot and F. Tahi. Behaviour preservation of a biological regulatory network
when embedded into a larger network. Fundam. Inform., 91:463–485, 2009.

[7] C. Biane and F. Delaplace. Causal reasoning on Boolean control networks based
on abduction: theory and application to cancer drug discovery. IEEE/ACM
Trans. Comput. Biol. Bioinform., 16:1574–1585, 2019.

[8] M.I. Davidich and S. Bornholdt. Boolean network model predicts cell cycle se-
quence of fission yeast. PLoS One, 3:e1672, 2008.

[9] F. Delaplace, H. Klaudel, T. Melliti, and S. Sené. Analysis of modular organisa-
tion of interaction networks based on asymptotic dynamics. In Proc. of CMSB’12,
volume 7605 of LNCS, pages 148–165, 2012.

[10] J. Demongeot, E. Goles, M. Morvan, M. Noual, and S. Sené. Attraction basins as
gauges of robustness against boundary conditions in biological complex systems.
PLoS One, 5:e11793, 2010.

[11] J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata cir-
cuits dynamics. Discr. Appl. Math., 160:398–415, 2012.

20

[12] B. Elspas. The theory of autonomous linear sequential networks. IRE Trans.
Circuit Theory, 6(1):45–60, 1959.

[13] T. Feder. Stable networks and product graphs. PhD thesis, Stanford Univ., 1990.

[14] P. Floreen and P. Orponen. Counting stable states and sizes of attraction domains
in Hopfield nets is hard. In Proc. of IJCNN’89, pages 395–399, 1989.

[15] E. Goles and L. Salinas. Comparison between parallel and serial dynamics of
Boolean networks. Theor. Comput. Sci., 396:247–253, 2008.

[16] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol., 22:437–467, 1969.

[17] L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network
for Arabidopsis thaliana flower morphogenesis. J. Theor. Biol., 193:307–319, 1998.

[18] M. Noual and S. Sené. Synchronism versus asynchronism in monotonic Boolean
automata networks. Nat. Comput., 17:393–402, 2018.

[19] P. Orponen. Neural networks and complexity theory. In Proc. of MFCS’92,
volume 629 of LNCS, pages 50–61, 1992.

[20] J. Pardo, S. Ivanov, and F. Delaplace. Sequential reprogramming of biological
network fate. In Proc. of CMSB’19, volume 11773 of LNCS, pages 20–41, 2019.

[21] K. Perrot, P. Perrotin, and S. Sené. A framework for (de)composing with Boolean
automata networks. In Proc. of MCU’18, volume 10881 of LNCS, pages 121–136,
2018.

[22] F. Robert. Discrete Iterations: A Metric Study. Springer, 1986.

[23] H. Siebert. Dynamical and structural modularity of discrete regulatory networks.
In Proc. of COMPMOD’09, volume 6 of EPTCS, pages 109–124, 2009.

[24] Tchebichef. Mém. nombres premiers. J. math. pures et appl., 17:366–390, 1852.

[25] R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol.,
42:563–585, 1973.

21

	1 Introduction
	2 Definitions
	2.1 Automata networks
	2.2 Modules
	2.3 Wirings

	3 Acyclicity
	3.1 Acyclic automata networks
	3.2 Acyclic Modules
	3.3 One-to-one modules

	4 Complexity Results
	5 Conclusion

