
ar
X

iv
:1

91
2.

12
43

0v
1

 [
cs

.C
C

]
 2

8
D

ec
 2

01
9

Approximate #Knapsack Computations to

Count Semi-Fair Allocations

Theofilos Triommatis1 and Aris Pagourtzis2

1 School of Electrical Engineering, Electronics and Computer Science, University of
Liverpool, Liverpool, L69-3BX, UK

Theofilos.Triommatis@liverpool.ac.uk
2 School of Electrical and Computer Engineering, National Technical University of

Athens, Polytechnioupoli, 15780 Zografou, Athens, Greece
pagour@cs.ntua.gr

Abstract. In this paper, we study the problem of counting the number
of different knapsack solutions with a prescribed cardinality. We present
an FPTAS for this problem, based on dynamic programming. We also
introduce two different types of semi-fair allocations of indivisible goods
between two players. By semi-fair allocations, we mean allocations that
ensure that at least one of the two players will be free of envy. We
study the problem of counting such allocations and we provide FPTASs
for both types, by employing our FPTAS for the prescribed cardinality
knapsack problem.

Keywords: knapsack problems · counting problems · FPTAS · fair al-
locations · envy-freeness

1 Introduction

We define and study three counting problems. The first of them concerns knap-
sack solutions with a prescribed number of items allowed in the knapsack, while
the other two concern two new notions of allocations of indivisible goods among
two players. We show that both our allocation notions imply a semi-fairness
property, namely that at least one of the two players is envy-free. From a com-
putational point of view both types of allocations are shown to be easy to satisfy,
however the corresponding counting problems seem to be hard. We provide fully
polynomial-time approximation schemes for all three problems that we study.
Along the way we compare our new notions of allocations to the standard no-
tion of envy-freeness (EF) [5] and show that one of them is incomparable to
EF, while the other one includes all EF allocations. Note that the problem of
approximate counting allocations, apart from its own interest, may serve as a
basis for solving problems under uncertainty [2].

In the counting version of a decision problem that asks for the existence
of a solution to the given instance we are interested in counting the number
of solutions to the instance. The complexity class that characterizes counting
problems with polynomial-time verifiable solutions is the well-known class #P

http://arxiv.org/abs/1912.12430v1

2 T. Triommatis and A. Pagourtzis

[11] and it is known that it contains some hard counting problems. It is also
known that counting problems that have NP-complete existence versions are
not approximable unless NP=RP [4]. In contrast, the class #PE [6,9], consisting
of counting problems in #P that have an easy existence version, contains many
approximable counting problems. Moreover, several well-known approximable
counting problems belong to a subclass of #PE, called TotP [9]; in [9] it is
proven that TotP is the class that contains all the functions of #PE that are
self-reducible. Such a problem is #Knapsack, which admits an FPTAS [10].
Here we show, among others, that our counting problems share the property of
having easy existence version, thus providing the first evidence that they admit
an FPTAS.

The first problem that we study is #Exact M -Items Knapsack, a prob-
lem the optimization version of which has recently been studied [7]. We will
first present an FPTAS for this problem and then use it to obtain FPTASs for
the allocation counting problems that we define in this paper. This connection
could be of further interest as only few variants of Knapsack have been associ-
ated to allocation problems; such an example is the Non-Linear Fractional

Equality Knapsack [12].

2 The #Exact M -Items Knapsack Problem

In this section, we define #Exact M -Items Knapsack and provide an FP-
TAS for it. Our algorithm uses dynamic programming and builds on techniques
developed in [3] and [10]. Firstly we will define the decision version of #Exact

M -Items Knapsack which is very similar to the standard Knapsack problem
with the additional restriction that a specific number of objects should be put
in the knapsack. Note that we ignore objects’ values as we are interested in all
feasible solutions, that is, solutions in which the sum of weights does not exceed
the capacity of the knapsack.

Definition 2.1 (Exact M-Items Knapsack). Given the weights {w1, . . . , wn}
of n objects, an integer M ∈ {1, . . . , n} and a capacity C, is there a subset S of
{1, . . . , n} such that

∑

i∈S

wi ≤ C and |S| = M (1)

To describe the set of feasible solutions of Exact M -Items Knapsack in
any sub-problem we examine, we will use a function f : {1, . . . , n}×{1, . . . ,M}×
R

+ → P(P(S)) with

f(i,m, c) =







S ⊆ {1, . . . , i} :
∑

j∈S

wj ≤ c and |S| = m







(2)

where P(A) denotes the power set of A.
Thus, f(i,m, c) is the set of feasible knapsack solutions that use only the first

i objects and have exactly m objects in the knapsack and total weight at most

An FPTAS for #Semi-Fair Allocations 3

c. Clearly, the set of solutions to the Exact M -Items Knapsack problem is
given by f(n,M,C).

Let us now define the counting version of Exact M -Items Knapsack.

Definition 2.2 (#Exact M-Items Knapsack). Given the weights {w1, . . . ,
, wn} of n objects, an integer M ∈ {1, . . . , n} and a capacity C, how many subsets
S of {1, . . . , n} are there such that

∑

i∈S

wi ≤ C and |S| = M (3)

Remark 2.1. Note that the solution to an instance of #Exact M -Items Knap-

sack is the cardinality of f(n,M,C), i.e. |f(n,M,C)|.

Remark 2.2. If the values n and M are fixed and c, c′ ∈ R
+ with c ≤ c′ then

|f(n,M, c)| ≤ |f(n,M, c′)|

This means that f is monotone w.r.t. the capacity.

The #Exact M -Items Knapsack problem is #P-hard, since #Knapsack

can be easily reduced to it. We therefore aim at approximating it. Following ideas
of Stefankovic et al [10] we will define a function τ in order to approximate the
solution of #Exact M -Items Knapsack.

Definition 2.3. We define τ : {0, . . . ,M} × {0, . . . , n} × R
+ −→ R with

τ(m, i, a) =











+∞ if a = 0 or m > i,

min {c ∈ R : |f(i,m, c)| ≥ a} if a ≤
(

i
m

)

and m ≤ i,

+∞ otherwise

(4)

Remark 2.3. Note that we consider as a feasible solution the one that leaves the
knapsack empty, hence τ(0, i, 1) = 0.

So τ(m, i, a) represents the minimum capacity such that the number of so-
lutions of Exact M -Items Knapsackwith exactly m items from {1, . . . , i} is
at least a.

We also note that a should be a non negative integer, more precisely a ∈
{0, 1, . . . , 2n}, but instead in the above definition we let a ∈ R

+. This hap-
pens because we will approximate the number of solutions of Exact M -Items

Knapsack.

Notice that with the help of function τ we can redefine the solution to an
instance of #Exact M -Items Knapsack as follows:

|f(n,M,C)| = max {a ∈ {0, 1, . . . , 2n} : τ(M,n, a) ≤ C}

4 T. Triommatis and A. Pagourtzis

Remark 2.4. From Remark 2.2 and the definition of τ it is easy to see that for
fixed 0 ≤ i ≤ n, 0 ≤ m ≤ i and a ≤ a′ we have that

τ(m, i, a) ≤ τ(m, i, a′)

This means that τ is non-decreasing w.r.t. a.

Lemma 2.1. For every i ∈ {1, . . . , n}, m ∈ {1, . . . ,M} and a ∈ R
+, τ satisfies

the following recursion

τ(m, i, a) = min
k∈[0,1]

max

{

τ(m− 1, i− 1, ka) + wi

τ (m, i− 1, (1− k)a)
(5)

Note that in the i-th step of the recursion, there are (1 − k)a solutions that
do not contain wi and ka solutions that contain it. Furthermore we can calculate
the minimum in each step if we consider every

k =
r

a
, where r ∈ Z and 0 ≤ r ≤ a

By Definition 2.3 the domain of τ is Dom(τ) = {1, . . . ,M} × {1, . . . , n} × R
+.

In order to compute the exact minimum in every step of the recursion we would
have to check every possible value of r, 0 ≤ r ≤ a ≤

(

i
m

)

, thus needing in the end
O(2n) evaluations. We can approximate the minimum efficiently by restricting
τ in Ω where

Ω = {1, . . . ,M} × {1, . . . , n} ×
{

0, 1, . . . , ⌈n logQ(ε) 2⌉
}

and Q(ε) = 1 +
ε

n+ 1

Let s = ⌈n logQ 2⌉ and T = τ |Ω, the restriction of τ in Ω. As T is a restriction
of τ it must satisfy recursion 5, and in particular:

T (m, i, j) = min
k∈[0,1]

max

{

T
(

m− 1, i− 1, ⌊j + logQ k⌋
)

+ wi

T
(

m, i− 1, ⌊j + logQ(1− k)⌋
) (6)

Now with the following algorithm we can compute T efficiently and as a
result we get an approximation of its optimal solution.

An FPTAS for #Semi-Fair Allocations 5

Algorithm 1 Count Exact M -Items Knapsack

Input: Integers w1, . . . , wn, C,M and ε > 0
Output: (1 + ε)Approximation for #Exact M-Items Knapsack

1: Set T [0, i, 1] = 0 for i ≥ 0 and T [0, i, 0] = ∞ for i ≥ 0
2: Set T [1, i, 0] = ∞ for i ≥ 0 and T [1, 0, j] = ∞ for j ≥ 0
3: Set T [0, i, j] = ∞ for i, j ≥ 0
4: Set Q = 1 + ε

n+1

5: for m=1 to M do

6: for i=1 to n do

7: for j=1 to s do

8: if
(

m > i or j >
(

i

m

))

then

9: T [m, i, j] = ∞
10: else

11: T [m, i, j] = mink∈[0,1] max

{

T
[

m− 1, i− 1, ⌊j + logQ k⌋
]

+ wi

T
[

m, i− 1, ⌊j + logQ(1− k)⌋
]

12: Set j′ = max{j : T [M,n, j] ≤ C}

13: Return: Z′ = Qj′+1

Now we will prove that T approximates τ in the following manner

Lemma 2.2.
Let i ≥ 1, 0 ≤ m ≤ i. Assume that for every j ∈ {0, . . . , s}, T [m, i−1, j] satisfies

τ
(

m, i− 1, Qj−i+1
)

≤ T [m, i− 1, j] ≤ τ
(

m, i− 1, Qj
)

Then for all j ∈ {0, . . . , s} we have that T [m, i, j] computed using 6 satisfies:

τ
(

m, i,Qj−i
)

≤ T [m, i, j] ≤ τ
(

m, i,Qj
)

Now we are ready to prove that the output Z ′ of Algorithm 1 is a (1 + ε)
approximation of the solution of #Exact M -Items Knapsack.

Theorem 2.1. Let Z be the solution of #Exact M -Items Knapsack problem
on an instance with n items. Then for every ε ∈ (0, 1), Algorithm 1 outputs Z ′

such that

(1− ε)Z ≤ Z ′ ≤ (1 + ε)Z, and the algorithm runs in time O

(

n4

ε
log

n

ε

)

Proof. By Lemma 2.2 we have for j′ = max{j : T [M,n, j] ≤ C} that the
approximation Z ′ does not underestimates Z because

C ≤ T [M,n, j′ + 1] ≤ τ
(

M,n,Qj′+1
)

Moreover we have at least Q(j′−n) solutions of Exact M -Items Knapsack

because
τ
(

M,n,Q(j′−n)
)

≤ T [M,n, j′] ≤ C

6 T. Triommatis and A. Pagourtzis

=⇒
Z ′

Z
≤

Qj′+1

Qj′−n
= Qn+1 =

(

1 +
ε

n+ 1

)n+1

≤ eε

This proves that the output of the algorithm satisfies the statement of the
theorem. All that is left to prove is the running time.

The algorithm fills up a (n ×m × s) matrix with m = O(n). Also we have
discussed above that in order to compute the minimum in recursion (6) we must
search all the values of a finite and discrete set S. More particular for every
j ∈ {0, 1, . . . , s}, we have that S = S1 ∪ S2 where S1 = {Q−j, . . . , Q0} and
S2 = {1−Q0, . . . , 1−Q−j}. So it will take time O(s) to calculate the T [m, i, j]
cell of the matrix. Therefore it will take time O(nms2) to fill up the matrix.

Moreover we have that s = ⌈n logQ 2⌉ = O
(

n2

ε

)

. So if the algorithm searches

all the values of S in each step in order to compute the minimum of recursion (6)

it will take time O
(

n6

ε2

)

.

But from Remark 2.4, we know that τ is increasing, so as k ∈ [0, 1] increases,
T
[

m− 1, i− 1, ⌊j + logQ k⌋
]

+ wi increases and T
[

m, i− 1, ⌊j + logQ (1− k)⌋
]

decreases.
Now the minimum of the maximum, will be achieved for k ∈ [0, 1] with the

following property: Either k ∈ {0, 1} or for every k′ < k we have

T
[

m, i− 1, ⌊j + logQ (1 − k′)⌋
]

< T
[

m− 1, i− 1, ⌊j + logQ k′⌋
]

+ wi

and for every k′ > k

T
[

m, i− 1, ⌊j + logQ (1 − k′)⌋
]

≥ T
[

m− 1, i− 1, ⌊j + logQ k′⌋
]

+ wi

Unfortunately we can’t have S sorted, but we can compute S1 and S2 in such
a way that their elements will already be in order. If we apply binary search to
S1 then we can find k1 ∈ [0, 1] that satisfies the property to be the minimum
of the maximum of T . Accordingly by applying binary search to S2 we will find
k2 ∈ [0, 1] that satisfies the above property. So with this technique it takes time
O(log s) to compute T [m, i, j] and finally the running time of the algorithm is

O (nms log s) = O
(

n4

ε
log n

ε

)

, concluding the proof. ⊓⊔

3 Allocations where players value their bundle more than

others do

In this section we will define the problem of allocating n goods between two
players A and B in such a way that each player values its bundle more than the
other player. We will assume that the i-th goods has value ai for A and bi for
B. More formally we have

Definition 3.1 (Larger-than-swap-Player-Valuation (LPV) allocation).
Given two sets A = {ai ∈ Z

+ : 1 ≤ i ≤ n} and B = {bi ∈ Z
+ : 1 ≤ i ≤ n},

An FPTAS for #Semi-Fair Allocations 7

where n ∈ N, the goal is to find a partition of S = {1, . . . , n} into two sets SA

and SB, such that
∑

SA

ai ≥
∑

SA

bi and
∑

SB

bi ≥
∑

SB

ai (7)

In other words, the LPV allocation is a pair of bundles (SA, SB) such that
bundle SA is more valuable to A than to B and bundle SB is more valuable to
B than to A.

Usually in this type of problems we are interested in fair solutions, but the
interesting part is that there are many definitions of fairness. The most common
notion of a fair solution is that the players should be envy free as was introduced
in [5] and as the name suggests the goal is, A not to envy the bundle of B and
vice versa.

Definition 3.2 (Envy-Free (EF) allocation). An allocation (SA, SB) of n
goods among two players A and B, where the i-th good has value ai for A and
bi for B, is called Envy Free if

∑

SA

ai ≥
∑

SB

ai and
∑

SB

bi ≥
∑

SA

bi (8)

Definition 3.3 (semi-Envy-Free (sEF) allocation). For an allocation (SA, SB)
of n goods among two players A and B wi will say that A doesn’t envy B or

A is free of envy, and we will denote it with sEF(A), if

∑

SA

ai ≥
∑

SB

ai (9)

Lemma 3.1. In an LPV allocation at least one of the two players is free of
envy.

Proof. There are two possible cases either
∑

SA

bi ≥
∑

SB

bi or
∑

SB

bi ≥
∑

SA

bi

If
∑

SB
bi ≥

∑

SA
bi then, by definition, B is free of envy. If

∑

SA
bi ≥

∑

SB
bi

then considering the property of LPV allocation (7) we have

∑

SA

ai ≥
∑

SA

bi ≥
∑

SB

bi ≥
∑

SB

ai =⇒
∑

SA

ai ≥
∑

SB

ai

hence player A is free of envy. ⊓⊔

Remark 3.1. It is easy to find an LPV allocation. We can look at all values
ai and bi, if ai ≥ bi then i ∈ SA else i ∈ SB. Note that there is only one LPV
allocation if ai > bi for every 1 ≤ i ≤ n, namely SA = S, SB = ∅ (and similarly
if bi > ai for every 1 ≤ i ≤ n). This means that the problem of counting LPV
allocations belongs to #PE as mentioned earlier (cf. [6,9].

8 T. Triommatis and A. Pagourtzis

Definition 3.4 (#LPV Allocations Problem). Given two sets A = {ai ∈
Z
+ : 1 ≤ i ≤ n} and B = {bi ∈ Z

+ : 1 ≤ i ≤ n}, where n ∈ N, find the number
of partitions of S = {1, . . . , n} into two sets SA and SB, such that

∑

SA

ai ≥
∑

SA

bi and
∑

SB

bi ≥
∑

SB

ai (10)

We will now give a reduction of #LPV Allocations problem to #Exact

M -Items Knapsack. This will lead to an FPTAS for the former.

Lemma 3.2. The solution Y of #LPV Allocations on input A = {a1, . . . , an}
and B = {b1, . . . , bn}, coincides with the sum of solutions Zm of #Exact

M -Items Knapsack on input w1, . . . , wn, where wi = ai − bi + b, and b =
max1≤i≤n bi, capacity C = mb and exactly m items in the knapsack, for m ∈
{1, . . . , n− 1} (assuming w.l.o.g.

∑n

i=1 ai ≥
∑n

i=1 bi):

Y =

n−1
∑

m=1

Zm

So an FPTAS algorithm for #LPV Allocations is the following:

Algorithm 2 Count LPV Allocations

Input: Integers a1, . . . , an, b1, . . . , bn and ε > 0
Output: (1 + ε)Approximation for #LPV Allocations

1: Sa = a1 + · · ·+ an

2: Sb = b1 + · · ·+ bn
3: Y=0
4: if Sa ≥ Sb then

5: b = max(b1, ..., bn)
6: for i=1 to n do

7: wi = ai − bi + b

8: for m = 1 to n− 1 do

9: Y=Y+Count Exact M-Items Knapsack(w1, ..., wn,mb,m, ε)

10: else

11: b = max(a1, ..., an)
12: for i=1 to n do

13: wi = bi − ai + b

14: for m = 1 to n− 1 do

15: Y=Y+Count Exact M-Items Knapsack(w1, ..., wn,mb,m, ε)

16: Return: Y

Theorem 3.1. Let Y be the solution of #LPV Allocations problem. Then
for every ε ∈ (0, 1), Algorithm 2 outputs Y ′ such that

(1− ε)Y ≤ Y ′ ≤ (1 + ε)Y, and the algorithm runs in time O

(

n5

ε
log

n

ε

)

An FPTAS for #Semi-Fair Allocations 9

Proof. Let Z ′
m be the output of Algorithm 1 for the #Exact M -Items Knap-

sack problem with m items in the knapsack, capacity C(m) (depends on m)
and weights w1, w2, . . . , wn and Zm be its exact solution. From Lemma 3.2 we
have that Algorithm 2 outputs

Y ′ =

n−1
∑

m=1

Z ′
m ≤

n−1
∑

m=1

(1 + ε)Zm = (1 + ε)

n−1
∑

m=1

Zm = (1 + ε)Y

Accordingly

Y ′ =

n−1
∑

m=1

Z ′
m ≥

n−1
∑

m=1

(1− ε)Zm = (1− ε)

n−1
∑

m=1

Zm = (1− ε)Y

As far as running time is concerned, Algorithm 2 consists of simple operations
that take time O(n) and then executes (n− 1) times the algorithm for #Exact

M -Items Knapsack. Since Algorithm 1 runs in time O
(

n4

ε
log n

ε

)

, we obtain

the claimed running time. ⊓⊔

4 LTV Allocations

In the previous section we have studied the LPV Allocations and we proved
that in a solution of the LPV Allocations, at least one of the two players will
be free of envy. However, the converse is not true, as there exist instances such
as A = {8, 4, 6, 5} and B = {5, 8, 7, 7}: if A picks items 1 and 2 and B picks
items 3 and 4, i.e. SA = {1, 2} and SB = {3, 4}, it is easy to confirm that the
couple (SA, SB) is an envy free solution but it doesn’t satisfy Definition 3.1. The
Venn diagram in Figure 2 (appendix) visualizes the situation.

Observe that by counting LPV allocations we may miss several EF or sEF
allocations. In order to capture more EF and sEF allocations, we will now define
a second notion of allocations.

Definition 4.1 (Larger-than-swap-Total-Valuation (LTV) allocations).
Given two sets A = {ai ∈ Z

+ : 1 ≤ i ≤ n} and B = {bi ∈ Z
+ : 1 ≤ i ≤ n}

where n ∈ N, the goal is to find a partition of S = {1, . . . , n} into two sets SA

and SB, such that SA ∩ SB = ∅ and SA ∪ SB = S with the following property

∑

SA

(ai − bi) ≥
∑

SB

(ai − bi) (11)

Proposition 4.1. LTV allocations contain all EF and all LPV allocations.

We can now update the Venn diagram of the allocations to include the LTV
allocations, giving a much clearer view of the inclusion relation between the
allocations.

10 T. Triommatis and A. Pagourtzis

sEF (A) sEF (B)

LPV

LTV

EF

Fig. 1. Relations between LTV, LPV and (semi) Envy Free Allocations. Notation is as
in Figure 2, and LTV denotes the set of LTV allocations.

Remark 4.1. The LTV Allocations problem also has some easy-to-find solu-
tions, e.g. the solution that assigns to A all objects that A values more than B
and vice versa.

We will now define the corresponding counting problem and study its com-
plexity.

Definition 4.2 (#LTV Allocations). Given two sets A = {ai ∈ Z
+ : 1 ≤

i ≤ n} and B = {bi ∈ Z
+ : 1 ≤ i ≤ n}, where n ∈ N, the goal is to find how

many partitions of S = {1, . . . , n} into two sets (SA, SB) are there, such that
SA ∩ SB = ∅ and SA ∪ SB = S, satisfying the following property

∑

SA

(ai − bi) ≥
∑

SB

(ai − bi) (12)

By Remark 4.1 it is not unlikely that #LTV Allocations be approximable,
as it belongs to #PE (cf. [6,9]). Indeed, using similar arguments to those in the
proof of Lemma 3.2 we can prove that the following algorithm is an FPTAS
algorithm for #LTV Allocations.

An FPTAS for #Semi-Fair Allocations 11

Algorithm 3 Count LTV Allocations

Input: Integers a1, . . . , an, b1, . . . , bn and ε > 0
Output: (1 + ε)Approximation for #LTV Allocations

1: for i=1 to n do

2: di = ai − bi
3: Sum = (d1 + . . .+ dn)/2
4: Set b = 1−min(d1, ..., dn)
5: for i=1 to n do

6: Set wi = ai − bi + b

7: for m = 1 to n− 1 do

8: Y = Y +CountExact M-Items Knapsack(w1, ..., wn, Sum+mb,m, ε)

9: return Y

Lemma 4.1. The solution Y of #LTV Allocations on input A = {a1, . . . , an}
and B = {b1, . . . , bn}, coincides with the sum of solutions Zm of #Exact

M -Items Knapsack on input w1, . . . , wn, capacity ((
∑n

i=1 wi)/2 +mβ), β =
min {ai − bi : 1 ≤ i ≤ n} and wi = ai − bi − β + 1, and exactly m items in the
knapsack, for m ∈ {1, . . . , n− 1}, that is,

Y =

n−1
∑

m=1

Zm (13)

Theorem 4.1. Let Y be the exact solution of #LTV Allocations problem on
some input. Then for every ε ∈ (0, 1), Algorithm 3 outputs Y ′ such that

(1 − ε)Y ≤ Y ′ ≤ (1 + ε)Y, and runs in time O

(

n5

ε
log

n

ε

)

The proof is similar to the proof of Theorem 3.1 and is omitted.

5 Discussion

We presented an FPTAS for the problem of counting feasible knapsack solutions
with a specific (given) number of items; to the best of our knowledge no FT-
PAS has been proposed for this problem so far, despite its evident importance.
We built on Dyer’s dynamic programming algorithm [3]. An interesting future
work would be to improve the complexity of the FPTAS by exploring dimension
reduction techniques (see e.g. [8]).

We also defined two new notions of allocations of indivisible goods and pro-
vided FPTASs for the counting problems associated with them by employing
the above mentioned FPTAS. We leave as an open question whether our results
can be extended to more than two players.

Different notions of fair allocation are examined in various papers (see, e.g.,
[1] and references therein); it would be interesting to compare these notions to
our notions of LPV and LTV allocations. Moreover, we would like to see which of

12 T. Triommatis and A. Pagourtzis

our techniques might be applicable to counting versions of other fair allocation
problems.

Finally, we would like to settle the complexity of counting LPV and LTV allo-
cations either by proving #P-hardness (as we believe is the case) or by providing
polynomial-time algorithms.

References

1. G. Amanatidis, G. Birmpas, and V. Markakis. Comparing approximate relaxations
of envy-freeness. In J. Lang, editor, Proceedings of the Twenty-Seventh Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,

Stockholm, Sweden., pages 42–48. ijcai.org, 2018.
2. J. M. Buhmann, A. Gronskiy, M. Mihalák, T. Pröger, R. Srámek, and P. Wid-

mayer. Robust optimization in the presence of uncertainty: A generic approach.
J. Comput. Syst. Sci., 94:135–166, 2018.

3. M. E. Dyer. Approximate counting by dynamic programming. In L. L. Larmore
and M. X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium

on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 693–699.
ACM, 2003.

4. M. E. Dyer, L. A. Goldberg, C. S. Greenhill, and M. Jerrum. The relative com-
plexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004.

5. D. K. Foley. Resource allocation and the public sector. Yale Econ Essays, 7:45–98,
1967.

6. A. Kiayias, A. Pagourtzis, K. Sharma, and S. Zachos. Acceptor-definable counting
classes. In Y. Manolopoulos, S. Evripidou, and A. C. Kakas, editors, Advances
in Informatics, 8th Panhellenic Conference on Informatics, PCI 2001. Nicosia,

Cyprus, November 8-10, 2001, Revised Selected Papers, volume 2563 of Lecture

Notes in Computer Science, pages 453–463. Springer, 2001.
7. W. Li, J. Lee, and N. B. Shroff. A faster FPTAS for knapsack problem with

cardinality constraint. CoRR, abs/1902.00919, 2019.
8. N. Melissinos and A. Pagourtzis. A faster FPTAS for the subset-sums ratio prob-

lem. In L. Wang and D. Zhu, editors, Computing and Combinatorics - 24th Interna-

tional Conference, COCOON 2018, Qing Dao, China, July 2-4, 2018, Proceedings,
volume 10976 of Lecture Notes in Computer Science, pages 602–614. Springer,
2018.

9. A. Pagourtzis and S. Zachos. The complexity of counting functions with easy deci-
sion version. In R. Kralovic and P. Urzyczyn, editors, Mathematical Foundations of

Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná,

Slovakia, August 28-September 1, 2006, Proceedings, volume 4162 of Lecture Notes

in Computer Science, pages 741–752. Springer, 2006.
10. D. Stefankovic, S. Vempala, and E. Vigoda. A deterministic polynomial-time ap-

proximation scheme for counting knapsack solutions. SIAM J. Comput., 41(2):356–
366, 2012.

11. L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

12. A. Yazidi, T. M. Jonassen, and E. Herrera-Viedma. An aggregation approach for
solving the non-linear fractional equality knapsack problem. Expert Syst. Appl.,
110:323–334, 2018.

An FPTAS for #Semi-Fair Allocations 13

6 Appendix

Proof of Lemma 2.1

Proof. Let i ∈ {1, . . . , n}, m ∈ {1, . . . ,M} and a ∈ R
+. To prove that recur-

sion [5] holds we will consider that we have computed every

τ(m′, i′, a), for m′ ∈ {0, . . . ,m}, i′ ∈ {0, . . . , i− 1} and a ∈ [0, 2n)

We will now prove that for some k ∈ [0, 1]

τ(m, i, a) ≤ min
k∈[0,1]

max

{

τ(m− 1, i− 1, ka) + wi

τ (m, i− 1, (1− k)a)

Let B(k) = max {τ(m − 1, i− 1, ka) + wi, τ(m, i − 1, (1− k)a)}.

We observe that there exist at least ka solutions with weights w1, . . . , wi and
capacity no greater than B(k). Accordingly there exist at least (1−k)a solutions
with weights w1, . . . , wi−1 and capacity no greater than B(k). Therefore there
exist at least a solutions with capacity no greater than B(k). So we have that

τ(m, i, a) ≤ min
k∈[0,1]

B(k) =⇒

τ(m, i, a) ≤ min
k∈[0,1]

max

{

τ(m− 1, i− 1, ka) + wi

τ (m, i− 1, (1− k)a)
(14)

All that is left to prove is that

τ(m, i, a) ≥ min
k∈[0,1]

max

{

τ(m− 1, i− 1, ka) + wi

τ (m, i− 1, (1− k)a)

Let us consider the number of solutions to Exact M -Items Knapsack with
weights w1, . . . , wi, m items in the knapsack and capacity C = τ(m, i, a). For
some β ∈ [0, 1] there are at least βa solutions that contain the i-th item so

C = τ(m, i, a) ≥ τ(m, i, βa) = τ(m− 1, i− 1, βa) + wi

Moreover there are also (1 − β) solutions that do not contain the i-th item
so τ(m, i, (1− β)a) ≡ τ (m, i− 1, (1− β)a). For these solutions we have that

C = τ(m, i, a) ≥ τ(m, i, (1− β)a) = τ (m, i− 1, (1− β)a)

It is easy to check that the above inequalities are true if we bear in mind
Remark 2.4. Now we have that for some β ∈ [0, 1]

C = τ(m, i, a) ≥ max{τ(m− 1, i− 1, βa) + wi, τ(m, i− 1, (1− β)a)}

Hence

14 T. Triommatis and A. Pagourtzis

τ(m, i, a) ≥ min
k∈[0,1]

max

{

τ(m− 1, i− 1, ka) + wi

τ (m, i− 1, (1− k)a)
(15)

From equations (14) and (15) we obtain (5). ⊓⊔

Proof of Lemma 2.2

Proof. Let i ≥ 0, 0 ≤ m ≤ i. By the assumption of the lemma and remark 2.4
we have that

T
[

m− 1, i− 1, ⌊j + logQ k⌋
]

≥ τ
(

m− 1, i− 1, Q(⌊j+logQ k⌋−(i−1))
)

≥ τ
(

m− 1, i− 1, kQj−i
)

(16)

T
[

m, i− 1, ⌊j + logQ (1− k)⌋
]

≥ τ
(

m, i− 1, Q(⌊j+logQ (1−k)⌋−(i−1))
)

≥ τ
(

m, i− 1, (1− k)Qj−i
)

(17)

From inequalities 16 and 17 we have

T [m, i, j] = min
k∈[0,1]

max

{

T
[

m− 1, i− 1, ⌊j + logQ k⌋
]

+ wi

T
[

m, i− 1, ⌊j + logQ (1− k)⌋
]

≥ min
k∈[0,1]

max

{

τ
(

m− 1, i− 1, kQj−i
)

+ wi

τ
(

m, i− 1, (1− k)Qj−i
)

= τ
(

m, i,Q(j−i)
)

=⇒ T [m, i, j] ≥ τ
(

m, i,Q(j−i)
)

Using the same arguments as above, we prove the upper bound of the lemma.

T
[

m− 1, i− 1, ⌊j + logQ k⌋
]

≤ τ
(

m− 1, i− 1, Q(⌊j+logQ k⌋)
)

≤ τ
(

m− 1, i− 1, kQj
)

(18)

T
[

m, i− 1, ⌊j + logQ (1− k)⌋
]

≤ τ
(

m, i− 1, Q(⌊j+logQ (1−k)⌋)
)

≤ τ
(

m, i− 1, (1− k)Qj
)

(19)

Accordingly from inequalities 18 and 19 we have

T [m, i, j] = min
k∈[0,1]

max

{

T
[

m− 1, i− 1, ⌊j + logQ k⌋
]

+ wi

T
[

m, i− 1, ⌊j + logQ (1 − k)⌋
]

≤ min
k∈[0,1]

max

{

τ
(

m− 1, i− 1, kQj
)

+ wi

τ
(

m, i− 1, (1− k)Qj
)

= τ
(

m, i,Q(j)
)

=⇒ T [m, i, j] ≤ τ
(

m, i,Q(j)
)

An FPTAS for #Semi-Fair Allocations 15

Proof of Lemma 3.2

Proof. Without loss of generality we consider

n
∑

i=1

ai ≥
n
∑

i=1

bi (20)

(if not, we can exchange A and B.)
Now, if there exists a set S1 such that

∑

S1

bi ≥
∑

S1

ai ⇐⇒ −
∑

S1

ai ≥ −
∑

S1

bi, (21)

by adding inequalities [20] and [21] we have that

n
∑

i=1

ai −
∑

S1

ai ≥
n
∑

i=1

bi −
∑

S1

bi ⇐⇒
∑

S\S1

ai ≥
∑

S\S1

bi

This means that if a set S1 satisfies inequality [21] then (S\S1, S1) is an LPV
allocation. It is now obvious that instead of counting all pairs (SA, SB) that are
LPV allocations, we may just count all sets S1 ⊆ S for which

∑

S1

bi ≥
∑

S1

ai ⇐⇒
∑

S1

(ai − bi) ≤ 0

=⇒
∑

S1

(ai − bi) + |S1|b ≤ |S1|b ⇔
∑

S1

(ai − bi + b) ≤ |S1|b (22)

Setting
b = max

1≤i≤n
bi

for every i ∈ {1, ..., n} and S1 ⊆ S we have that

∑

S1

(ai − bi + b) ≥ 0 (23)

From [22] and [23] we have

0 ≤
∑

S1

(ai − bi + b) ≤ |S1|b (24)

If we now set wi := ai − bi + b and C := |S1|b then inequality [24] is equivalent
to

0 ≤
∑

S1

wi ≤ C

In conclusion, to find the number of LPV allocations we need to find, for each
1 ≤ m ≤ n − 1, how many sets S1 ⊆ S are there of cardinality |S1| = m
satisfying inequality [24] for C = mb. Summing up all these numbers we will get
our answer. ⊓⊔

16 T. Triommatis and A. Pagourtzis

sEF (A) sEF (B)

LPV

EF

Fig. 2. Relation of LPV to (semi-)envy-free allocations. EF denotes the set of Envy-
Free allocations, sEF(A) denotes the set of semi-Envy-Free allocations of A (accordingly
for B) and LPV is the set of LPV allocations.

Proof of Proposition 4.1

Proof. Let us consider SA, SB such that (SA, SB) is envy free, so
∑

SA

ai ≥
∑

SB

ai and
∑

SB

bi ≥
∑

SA

bi (25)

By adding the two inequalities we have
∑

SA

ai +
∑

SB

bi ≥
∑

SB

ai +
∑

SA

bi =⇒
∑

SA

ai −
∑

SA

bi ≥
∑

SB

ai −
∑

SB

bi (26)

Thus yielding inequality (11).
Now let us consider SA and SB to be an LPV allocation, so they will satisfy

the following
∑

SA

ai ≥
∑

SA

bi and
∑

SB

bi ≥
∑

SB

ai (27)

Again if we add the two inequalities we get (26) and then (11). ⊓⊔

Proof of Lemma 4.1

Proof. If there exists a set S1 such that

∑

i∈S1

ai − bi ≤

∑n

i=1 ai − bi
2

(28)

Then for its complement S\S1 we will have that

∑

i∈S\S1

ai − bi ≥

∑n

i=1 ai − bi
2

(29)

An FPTAS for #Semi-Fair Allocations 17

From inequalities (28) and (29) we have that

∑

i∈S1

ai − bi ≤

∑n

i=1 ai − bi
2

≤
∑

i∈S\S1

ai − bi

This means that if a set S1 satisfies inequality [28] then (S1, S\S1) is a solution
for the #LTV Allocations. It is now obvious that instead of counting all pairs
(S1, S2) which are solutions to the problem, we may count all S1 ⊆ S that
satisfy (28). One problem that arises is that if we were to use Algorithm 1 we
would need all wi to be non negative, so we can’t use wi = ai − bi. To avoid
having wi ≤ 0 we do the following trick. Let β = min {ai − bi : 1 ≤ i ≤ n} and
wi = ai − bi − β + 1 for i ∈ {1, ..., n}. Now we can confirm that for i ∈ {1, ..., n}

ai − bi ≥ β ⇐⇒ ai − bi − β ≥ 0 =⇒ ai − bi − β + 1 > 0

So for every i ∈ {1, ...n}, wi > 0. To count the solutions of #LTV Allocations

we have to count all S1 that satisfy (28) which is equivalent to counting all S1

that satisfy

∑

i∈S1

(ai − bi − β + 1) ≤

∑n
i=1 ai − bi

2
+ |S1|(1 − β) (30)

If we name C := |S1|(1− β) then inequality (30) is equivalent to

0 ≤
∑

S1

wi ≤ C

Therefore, to find the solution of #LTV Allocations we need to find how many
S1 ⊆ S are there with cardinality |S1|, such that they satisfy inequality [30]. If
we search for every possible |S1|, with 1 ≤ |S1| ≤ n − 1 and sum up all these
solutions we will get (13). ⊓⊔

	Approximate #Knapsack Computations to Count Semi-Fair Allocations

