Skip to main content

On Characterization of Petrie Partitionable Plane Graphs

  • Conference paper
  • First Online:
  • 525 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12337))

Abstract

Given a plane graph \(G=(V,E)\), a Petrie tour of G is a tour P of G that alternately turns left and right at each step. A Petrie tour partition of G is a collection \(\mathcal{P}=\{P_1,\ldots ,P_q\}\) of Petrie tours so that each edge of G is in exactly one tour \(P_i \in \mathcal{P}\). A Petrie tour is called a Petrie cycle if all its vertices are distinct. A Petrie cycle partition of G is a collection \(\mathcal{C}=\{C_1,\ldots ,C_p\}\) of Petrie cycles so that each vertex of G is in exactly one cycle \(C_i \in \mathcal{C}\). In this paper, we characterize 3-regular (4-regular, resp.) plane graphs with Petrie cycle (tour, resp.) partitions. Given a 4-regular plane graph \(G=(V,E)\), a 3-regularization of G is a 3-regular plane graph \(G_3\) obtained from G by splitting every vertex \(v\in V\) into two degree-3 vertices. G is called Petrie partitionable if it has a 3-regularization that has a Petrie cycle partition. In this paper, we present an elegant characterization of Petrie partitionable graphs. The general version of this problem is motivated by a data compression method, tristrip, used in computer graphics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bommes, D., et al.: State of the art in quad meshing. In: Eurographics STARS. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.6797 (2012)

  2. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., Kobbelt, L.: Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32(4), 98:1–98:12 (2013). Article 98

    Article  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London (1979)

    Google Scholar 

  4. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. In: ACM SIGGRAPH 2006, pp. 1057–1066 (2006)

    Google Scholar 

  5. Estkowski, R., Mitchell, J.S.B., Xiang, X.: Optimal decomposition of polygonal models into triangle strips. In: Proceedings of the 18th ACM Symposium on Computational Geometry (SoCG 2002), Barcelona, Spain, pp. 254–263, 5–7 June 2002

    Google Scholar 

  6. Fouquet, J.L., Jolivet, J.L.: Strong edge-coloring of cubic planar graphs. In: Adrian Bondy, J., Murty, U.S.R. (eds.) Progress in Graph Theory. Proceedings of the Conference on Combinatorics Held at the University of Waterloo, Waterloo, Ontario, pp. 247–264. Academic Press, Cambridge (1982)

    Google Scholar 

  7. Ivančo, J., Jendroľ, S.: On an Eberhard-type problem in cubic polyhedral graphs having Petrie and Hamiltonian cycles. Tatra. Mt. Math. Publ. 18, 57–62 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Ivančo, J., Jendroľ, S., Tkśč, M.: Note on Petrie and Hamiltonian cycles in cubic polyhedral graphs. Comment. Math. Univ. Carolin. 35(2), 413–417 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Jaeger, F., Shank, H.: On the edge-coloring problem for a class of 4-regular maps. J. Graph Theory 5, 269–275 (1981)

    Article  MathSciNet  Google Scholar 

  10. Kidwell, M.E., Bruce Richter, R.: Trees and Euler tours in a planar graph and its relatives. Am. Math. Mon. 94, 618–630 (1987)

    Article  MathSciNet  Google Scholar 

  11. Porcu, M.B., Scateni, R.: An interactive strpification algorithm based on dual graph operations. In: Eurographics 2003 (2003)

    Google Scholar 

  12. Ringel, G.: Färbungsprobleme auf Flächen und Graphen. Berlin (1959)

    Google Scholar 

  13. Z̆itnik, A.: Plane graphs with Eulerian Petrie walks. Discrete Math. 244, 539–549 (2002)

    Article  MathSciNet  Google Scholar 

  14. Šíma, J.: Optimal triangle stripifications as minimum energy states in hopfield nets. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 199–204. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822_32

    Chapter  Google Scholar 

  15. Xiang, X., Held, M., Mitchell, J.S.B.: Fast and effective stripification of polygonal surface models. In: 1999 Symposium on Interactive 3D Graphics Layout, pp. 71–78 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, X., Zhang, H. (2020). On Characterization of Petrie Partitionable Plane Graphs. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics