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Abstract
Delegated quantum computing enables a client with weak computational power to delegate quantum

computing to a remote quantum server in such a way that the integrity of the server can be efficiently

verified by the client. Recently, a new model of delegated quantum computing has been proposed, namely,

rational delegated quantum computing. In this model, after the client interacts with the server, the client

pays a reward to the server depending on the server’s messages and the client’s random bits. The rational

server sends messages that maximize the expected value of the reward. It is known that the classical

client can delegate universal quantum computing to the rational quantum server in one round. In this

paper, we propose novel one-round rational delegated quantum computing protocols by generalizing the

classical rational sumcheck protocol. An advantage of our protocols is that they are gate-set independent:

the construction of the previous rational protocols depends on gate sets, while our sumcheck technique

can be easily realized with any local gate set (each of whose elementary gates can be specified with a

polynomial number of bits). Furthermore, as with the previous protocols, our reward function satisfies

natural requirements (the reward is non-negative, upper-bounded by a constant, and its maximum expected

value is lower-bounded by a constant). We also discuss the reward gap. Simply speaking, the reward gap is

a minimum loss on the expected value of the server’s reward incurred by the server’s behavior that makes

the client accept an incorrect answer. The reward gap should therefore be large enough to incentivize

the server to behave optimally. Although our sumcheck-based protocols have only exponentially small

reward gaps as in the previous protocols, we show that a constant reward gap can be achieved if two

noncommunicating but entangled rational servers are allowed. We also discuss whether a single rational

server is sufficient under the (widely believed) assumption that the learning-with-errors problem is hard for

polynomial-time quantum computing. Apart from these results, we show, under a certain condition, the

equivalence between rational and ordinary delegated quantum computing protocols. This equivalence then

serves as a basis for a reward-gap amplification method.
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I. INTRODUCTION

A. Background

It is widely accepted that quantum computing outperforms classical computing in several tasks

such as integer factorization [2], approximations of Jones Polynomials [3–5], and simulations of

quantum systems [6, 7]. Due to the superiority of quantum computing, huge experimental efforts

have sought to realize larger quantum devices, and devices capable of controlling 12–53 qubits

have already been implemented [8–12]. As the size of quantum devices increases so does the

importance of efficiently verifying whether a constructed quantum device correctly works. The

verification of quantum computing also plays an important role in delegated quantum computing,

which enables a client with weak computational power to delegate quantum computing to a remote

(potentially malicious) server in such a way that the client can efficiently verify whether the server

faithfully computes the delegated problem (i.e., can verify the integrity of the server).

One of the most important open problems in the field of quantum computing is whether a

classical client can efficiently delegate universal quantum computing to a quantum server while

efficiently verifying the integrity of the server. In delegated quantum computing, the server may

be malicious and may make the client accept an incorrect answer. Therefore, the client has to

efficiently verify the integrity of the server using only classical computation and communica-

tion. Furthermore, the honest server’s computational power should be bounded by polynomial-

time quantum computing, because delegated quantum computing with a server having unbounded

computational power is unrealistic. This limitation is the large difference between delegated quan-

tum computing and interactive proof systems for BQP. In interactive proof systems, the com-

putational power of the prover (i.e., the server) is unbounded. Indeed, the known construction

of an interactive proof system for BQP requires the honest prover to have PP computational

power [13], and it is not known whether the honest prover’s power can be reduced to BQP. There-

fore, this open problem cannot be straightforwardly solved from the well-known containment

BQP⊆PSPACE=IP [14].

So far, several partial solutions to this open problem have been obtained. For example, if small

quantum memories, single-qubit state preparations, or single-qubit measurements are allowed for

the classical client, the client can efficiently delegate verifiable universal quantum computing to

the quantum server [15–21]. As another example, the completely classical client can efficiently

delegate it to multiple quantum servers who share entangled states but cannot communicate with

each other [19, 22–29]. It is also known that some problems in BQP can be efficiently veri-

fied by interactions between the classical client and quantum server [30–33]. Examples of such

verifiable problems are integer factorization, recursive Fourier sampling [30], promise problems

related to output probability distributions of quantum circuits in the second level of the Fourier

hierarchy [31, 32], and the calculation of the order of solvable groups [33]. Furthermore, it has

recently been shown that if the learning-with-errors (LWE) problem is hard for polynomial-time

quantum computing, the classical client can delegate verifiable universal quantum computing to

a single quantum server whose computational power is bounded by BQP1 even in the malicious

1 In this paper, for simplicity, we sometimes use complexity classes (e.g., BQP and BPP) to represent computational

powers. For example, we say that a server (a client) is a BQP server (a BPP client) when he/she is a polynomial-

time quantum server (classical client), i.e., he/she can perform polynomial-time quantum (probabilistic classical)

computing.

2



!"#$%&! '$()$(*

+(,&#-%,".!

/%&$(,0&#-%!

1$2,(3!

!"#$%&! '$()$(*

+4-%$5&*-(*6,"#0#-75.!

/%&$(,0&#-%!

(a)

(b)

FIG. 1: Schematics of two types of delegated quantum computing protocols. (a) In ordinary delegated

quantum computing, the server may be malicious and try to deceive the client. (b) In rational delegated

quantum computing, the client pays a reward to the server after the interaction. The server is always rational,

i.e., he/she wants to maximize the expected value of the reward.

case [34–36].

In this paper, we take a different approach to construct protocols for classical-client delegated

quantum computing. We consider delegating quantum computing to a rational server. This model

was first proposed by Morimae and Nishimura [37] based on the concept of (classical) rational in-

teractive proof systems [38]. We note again that the computational power of the server is bounded

by BQP in rational delegated quantum computing, while it is unbounded in the rational interac-

tive proof systems. In rational delegated quantum computing, after the client interacts with the

server, the client pays a reward to the server depending on the server’s messages and the client’s

random bits. As stated above, in ordinary delegated quantum computing [15–36], the server may

be malicious. On the other hand, in rational delegated quantum computing, the server is always

rational, i.e., he/she tries to maximize the expected value of the reward (see Fig. 1). In the real

world, there are several situations where service providers want to maximize their profits. Since

rational delegated quantum computing reflects such situations, this model can be considered as

another possible situation for delegated quantum computing. In Ref. [37], it was shown that the

classical client can delegate universal quantum computing to the rational quantum server in one

round in such a way that the expected value of the reward attains the maximum when the client

obtains the correct answer.

B. Our contribution

We propose novel one-round delegated quantum computing protocols with a classical client

and a rational quantum server. More precisely, we construct protocols where the classical client

can efficiently delegate to the rational quantum server the estimation of output probabilities of

n-qubit quantum circuits. Their estimation has many applications such as estimating the expected

values of observables, which are quantities interested especially by physicists, and solving deci-

sion problems in BQP. Specifically, we consider two classes of quantum circuits: any n-qubit

polynomial-size quantum circuit with k-qubit output measurements, where k = O(logn); and

approximately t-sparse n-qubit polynomial-size quantum circuits with n-qubit output measure-
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ments, where t is a polynomial in n. Here, t-sparse means that at most t output probabilities are

non-zero (for the formal definition, see Sec. II C). Since the goal of our rational protocols is to del-

egate the estimation of the output probabilities, we, for clarity, refer to our protocols as delegated

quantum estimating protocols. Using one of our delegated quantum estimating protocols, we can

also construct a one-round rational delegated quantum computing protocol for any decision prob-

lem in BQP. Intuitively, using a certain BQP-complete problem [16], any BQP problem can be

reduced to the estimation of the probability of the first qubit being projected onto |1〉. Therefore,

our argument works. Note that it is still open whether our results can be generalized to the esti-

mation of output probabilities of any n-qubit polynomial-size quantum circuit with n-qubit output

measurements.

Our protocols can be applied to a broader class of universal gate sets than the previous

protocols [37]. They work for any universal gate set each of whose elementary gates acts

on at most O(logn) qubits, while the previous protocols are tailored for Clifford gates plus

T ≡ |0〉〈0|+eiπ/4|1〉〈1| or classical gates plus the Hadamard gate. Note that we only consider gate

sets whose elementary gates can be specified with a polynomial number of bits. As another differ-

ence from Ref. [37], we show that our protocol can be applied to approximately sparse quantum

circuits.

Three conditions should be satisfied by rational delegated quantum computing protocols:

1. The reward is upper-bounded by a constant.

2. The reward is always non-negative if the BQP server takes an optimal strategy that maxi-

mizes its expected value2.

3. The maximum of the expected value of the reward is lower-bounded by a constant, where

the maximization is taken over all the server’s strategies that can be realized in quantum

polynomial time.

The first condition is natural because the client’s budget is limited. The second condition is also

natural because a negative reward means that the server pays the reward to the client. Indeed,

the original paper on rational interactive proof systems [38] pointed out that the reward must be

non-negative and upper-bounded by a constant. Furthermore, in Ref. [39], the non-negativity of

the reward (namely, ex-post individual rationality) is listed as one of crucial properties of reward

functions. The third condition guarantees that the server can obtain at least a constant reward on

average if the server is rational.

Additionally, the following optional condition would improve the practicality of rational dele-

gated quantum computing protocols:

4. The reward gap [40] is larger than a constant (or 1/nO(1)). Here, simply speaking, the reward

gap is a minimum loss on the expected value of the server’s reward incurred by the server’s

behavior that makes the client accept an incorrect answer. Note that such behavior may

require computational power beyond BQP, while we limit the optimal strategy maximizing

the expected value to one that can be executed in quantum polynomial time.

Someone may think that the fourth condition is not necessary for practical delegated quantum

computing protocols. In practice, however, there is a possibility where the server selects whether

2 More precisely, the server takes an optimal strategy that can be executed in quantum polynomial time, because

we assume that the computational power of the server is bounded by BQP. Throughout this paper, the server’s

optimization is limited to one that can be performed in quantum polynomial time unless explicitly noted otherwise.
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he/she behaves rationally or irrationally depending on the reward gap3. By satisfying the fourth

condition, we may be able to incentivize the server to perform rationally, i.e., to take an optimal

strategy that maximizes the expected value of the reward.

The protocols of Ref. [37] and our protocols satisfy only conditions 1–3. Whether the above

four conditions can be satisfied simultaneously is an open problem. In Ref. [37], it is shown that

if the reward gap is larger than 1/f(n) with a polynomial f(n), a super-polynomial increase of

the reward (i.e., the violation of the first condition) is unavoidable in one-round protocols with

a single server unless BQP⊆ Σ
P
3 . Since this inclusion is considered unlikely given the oracle

separation between BQP and PH [41], this implies that it may be impossible to satisfy the above

four conditions simultaneously in one-round protocols with a single server. Indeed, all existing

rational delegated quantum computing protocols, including ours, are one-round and have only

exponentially small gaps under the first three conditions.

In this paper, we also show that a constant reward gap can be achieved if two noncommu-

nicating but entangled servers are allowed. More precisely, for BQP problems, we construct a

multi-rational-server delegated quantum computing protocol that satisfies all four conditions si-

multaneously. We also discuss whether a single server is sufficient under the (widely believed)

assumption that the LWE problem is hard for polynomial-time quantum computation. Note that it

is still open whether a constant reward gap can be achieved unconditionally.

Apart from these results, we also give, under the certain condition introduced in Ref. [42], a re-

lation between rational and ordinary delegated quantum computing protocols. More precisely, we

show that under that condition, these two delegated quantum computing protocols can be converted

from one to the other and vice versa. This equivalence may provide a new approach to tackle the

open problem of whether a classical client can efficiently delegate universal quantum computing

to a (non-rational) quantum server while efficiently verifying the server’s integrity. Based on this

equivalence, we give an amplification method for the reward gap. Under the certain condition, we

can amplify the reward gap from 1/2n
O(1)

to a constant.

C. Overview of techniques

To construct our delegated quantum estimating protocols, we utilize the rational sumcheck

protocol [43]. The rational sumcheck protocol has been proposed to show that the calculation of
∑l

i=1 xi with integers xi ∈ {0, . . . ,M − 1} can be verified by an O(polylog(lM))-time classical

verifier in a one-round rational interactive proof system. To apply the rational sumcheck protocol

to our protocols, we generalize it so that it works for complex numbers. Then, by combining the

generalized rational sumcheck protocol with the Feynman path integral, we construct one-round

rational delegated quantum estimating protocols for the two types of quantum circuits, including

ones that can solve any BQP problem.

Our sumcheck-based protocols work for a broader class of universal gate sets than that used

in the previous protocols [37]. This difference is due to the decomposition method of output

probabilities of the delegated quantum circuit. In the previous protocols, the output probability is

decomposed using tree structures that are tailored for two specific gate sets–Clifford gates plus the

3 From a purely game-theoretic perspective, the server behaves rationally regardless of the value of the reward gap.

However, it should be hard to model all situations in the real world by using the game theory due to the difficulty

of defining an appropriate cost function. For example, in our situation, there may exist a server who wants to send

an incorrect answer even if he/she losses a little money but does not want to lose much money.
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T gate or classical gates plus the Hadamard gate. On the other hand, in our protocol, the output

probability is decomposed using the Feynman path integral.

Furthermore, one of our sumcheck-based protocols can be used to delegate the estimation of

output probabilities of approximately sparse quantum circuits. The intuitive reason we can do so

is that the maximum of the expected value of the reward monotonically increases as an output

probability of the delegated quantum circuit increases. This implies that the rational server has to

send high output probabilities to maximize the expected value of the reward as much as possible.

Since output probabilities of approximately sparse quantum circuits can be approximated by the

set of such high output probabilities as shown in Ref. [44], our rational protocol works.

To construct other rational delegated quantum computing protocols with a constant reward gap,

we utilize multiprover interactive proof systems with a constant number of provers and a constant

completeness-soundness gap [19, 22, 24, 26–29]. By following a construction used in Ref. [38],

we incorporate the multiprover interactive proof systems into a multi-rational-server delegated

quantum computing protocol. As a result of this construction, the completeness-soundness gap

is converted to the reward gap without changing the value of the gap. More precisely, when

the server’s computational power is bounded by BQP, the obtained reward gap is decreased by

a 1/2n
O(1)

additive term from the original completeness-soundness gap. In order to achieve the

conversion without changing the value, an unbounded computational power is required. The same

argument can also be applied to Mahadev’s single-prover interactive argument system [34], which

relies on the hardness assumption of LWE problems.

Finally, we show that, under the certain condition introduced in Ref. [42], rational and ordi-

nary delegated quantum computing protocols can be converted from one to the other and vice

versa. To convert ordinary delegated quantum computing protocols to rational ones, we show that

the construction in the previous paragraph can be used even under the condition. For the reverse

conversion, we utilize the construction in Ref. [42]. Using this conversion between rational and or-

dinary delegated quantum computing protocols, we show that the amplification of the reward gap

can be replaced with that of the completeness-soundness gap under that condition. This means

that the traditional amplification method for the completeness-soundness gap can be used to am-

plify the reward gap to a constant. By virtue of the condition, we also show that this reward-gap

amplification method works even when the original reward gap is exponentially small4.

II. PRELIMINARIES

In this section, we give some preliminaries. In Sec. II A, we define rational delegated quantum

computing. In Sec. II B, we define the reward gap. In Sec. II C, we define approximately sparse

quantum circuits. In Sec. II D, we introduce the BQP-complete problem used in this paper.

A. Rational delegated quantum computing

In this subsection, we define rational delegated quantum computing. This definition (Defini-

tion 3) will be used in Secs. II B and V. To understand Sec. III, it might be possible to skip this

4 Note that this does not mean that the traditional amplification method for the completeness-soundness gap works

for an exponentially small gap.

6



subsection. Following the original definition of rational interactive proof systems [38], we first

define the transcript T , the server’s view S, and the client’s view C as follows:

Definition 1 We assume that k is odd. Given an instance x and a round i, we define the ith
transcript Ti, the ith server’s view Si, and the ith client’s view Ci as follows (0 ≤ i ≤ k):

• T0 = S0 = C0 = {x}.

• When i is odd, Ti = {Ti−1, ai}, where ai is the ith server’s message. On the other hand,

when i(> 0) is even, Ti = {Ti−1, bi}, where bi is the ith client’s message.

• For odd i, Si = {Si−2, Ti−1, Vi}, where Vi is a quantum circuit used to compute ai. Note that

Si and Vi are not defined for even i because the even-numbered round is a communication

from the client to the server.

• For even i, Ci = {Ci−2, Ti−1, ri}, where ri is a random bit string used to compute bi. Note

that Ci is not defined for odd i because the odd-numbered round is a communication from the

server to the client.

For all i, messages ai and bi are polynomial lengths. Particularly, bi is generated from Ci in

classical polynomial time. The quantum circuit Vi is decided from Si−2.

Based on Definition 1, we define the following interaction consisting of k rounds between a

BPP client and a server, where we call it k-round interaction:

Definition 2 Let k be odd. This means that the protocol begins with the server’s step. When k is

even, the following definition can be adopted by adding a communication from the server to the

client at the beginning of the protocol. Let us consider the following k-round interaction:

1. A BPP client interacts with a server k times. In the ith round for odd i, the server sends ai
to the client. In the ith round for even i, the client sends bi to the server.

2. The client efficiently calculates a predicate on the instance x and the kth transcript Tk. If the

predicate evaluates to o = 1, the client answers YES. On the other hand, if o = 0, the client

answers NO.

3. The client efficiently calculates the reward5 R ∈ [0, c] and pays it to the server, where c is

a positive constant. Note that it is not necessary for the client and server to know the value

of c6. The reward function R : {0, 1}∗ × {0, 1}poly(|x|) × {0, 1}poly(|x|) → R≥0 depends on

the instance x ∈ {0, 1}∗, the kth transcript Tk ∈ {0, 1}poly(|x|), and the client’s random bits

rk+1 ∈ {0, 1}poly(|x|).
Rational delegated quantum computing for decision problems is defined as follows:

Definition 3 Let E[f ] denote the expectation value of a function f . Let Dk be a distribution that

the kth transcript follows. The k-round interaction defined in Definition 2 is called a k-round

rational delegated quantum computing protocol for decision problems if the following conditions

(Eqs. (1) – (5)) hold: for a language L ⊆ {0, 1}∗ in BQP, if x ∈ L, there exists a distribution

5 Here, we define the reward as a real value. It should be approximated by a polynomial-size bit string in actual

protocols. In our results, the reward gap (see Definition 4) can be at least e−f(n) for a polynomial f(n) in the

problem size n. Therefore, the approximation does not affect our results. Note that if the reward gap is a constant,

a constant number of bits are sufficient to approximate the reward.
6 There may exist functions such that their upper bounds can be efficiently shown to be constant but their exact values

cannot be efficiently derived. Such functions can also be used as reward functions.
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DYES that can be generated in quantum polynomial time, such that

Pr[o = 1 | Dk = DYES] ≥
2

3
(1)

and

ETk∼DYES,rk+1
[R(x, Tk, rk+1)] ≥ cYES (2)

with some positive constant cYES ≤ c. Here, the expectation is taken over the client’s random bits

rk+1 and the distribution DYES of the kth transcript Tk.

On the other hand, if x /∈ L, there exists a distribution DNO that can be generated in quantum

polynomial time, such that

Pr[o = 0 | Dk = DNO] ≥
2

3
(3)

and

ETk∼DNO,rk+1
[R(x, Tk, rk+1)] ≥ cNO (4)

with some positive constant cNO ≤ c. Here, the expectation is taken over the client’s random bits

rk+1 and the distribution DNO of the kth transcript Tk.

To generate distributions DYES and DNO, the server decides the ith message ai following a

distribution

Di ≡ {|〈ai|Vi|ψi−2〉|2}ai ,

where |ψi−2〉 is the server’s quantum state immediately after generating the (i − 2)th message

ai−2 for i ≥ 3 and is the tensor product of a polynomial number of |0〉’s for i = 1, and Vi is a

polynomial-time generated quantum circuit such that

Vi = argmaxV EDk,Tk ∼Dk,rk+1
[R(x, Tk, rk+1)|Si−2, Ti−1, V |ψi−2〉]. (5)

The expectation is taken over Tk, rk+1, and all possible distributions Dk that can be generated

in quantum polynomial time and are compatible with the server’s view Si−2, the transcript Ti−1,

and a quantum state V |ψi−2〉. Here, we consider only the maximizations that can be performed in

quantum polynomial time.

Since the server’s computational power is bounded by BQP, it is in general hard for the server to

select an optimal message that satisfies Eqs. (1) and (2). Therefore, the server’s message ai should

be probabilistically generated. That is why we consider the distribution DYES. The same argument

holds for the NO case.

The value 2/3 in Eqs. (1) and (3) can be amplified to 1−2−f(|x|), where f(|x|) is any polynomial

in |x|, using the standard amplification method (i.e., by repeating steps 1 and 2, and then taking

the majority vote among outputs in step 2). We here mention that the above definition of rational

delegated quantum computing protocols satisfies conditions 1–3 in Sec. I. This is straightforward

from R ∈ [0, c] and Eqs. (2) and (4).

The server would like to generate the ith message ai following a distribution that maximizes

the expected value of the finally obtained reward. However, at that time, the server cannot pre-

dict the future distribution Dk. Therefore, the server also takes the expectation over all possible

8



distributions Dk. The distribution Di in Eq. (5) is a distribution that maximizes such expected

reward.

All of our rational protocols except for those in Secs. III A and III C are in accordance with Def-

inition 3. Our rational protocols in Secs. III A and III C are rational delegated quantum computing

protocols for function problems, which can be defined in a similar way.

For convenience, we define a strategy s as a set of the server’s messages {ai}i, which may be

adaptively decided according to the previous client’s messages. When we focus on the dependence

on the server’s messages, we write ETk∼D,rk+1
[R(x, Tk, rk+1)] by Es∼D′[R(x, s)] for short.

B. Reward gap

Guo et al. have introduced the reward gap [40], which is also called the utility gap [42, 45].

For decision problems, the reward gap is defined as follows:

Definition 4 Let a strategy s be defined as a set {ai}i of the server’s messages. Let D be a distri-

bution that the server’s strategy s follows. Let Dmax be the distribution D, where each message ai
follows the distribution in Eq. (5). We say that a rational delegated quantum computing protocol

has a 1/γ(|x|)-reward gap if for any input x,

Es∼Dmax[R(x, s)]−maxs∈Sincorrect
E[R(x, s)] ≥ 1

γ(|x|),

where γ(|x|) is any function of |x|, and Sincorrect is the set of the server’s strategies that make the

client output an incorrect answer with unit probability7. Here, the expectation is also taken over

the client’s random bits, and the server’s strategy s may be adaptively decided according to the

client’s messages. Note that Sincorrect may include strategies that cannot be executed in quantum

polynomial time.

From Definition 3, if the server’s strategy s follows the distribution Dmax, the client outputs a cor-

rect answer with high probability. Es∼Dmax[R(x, s)] is the maximum expected value of the reward

paid to the rational BQP server. On the other hand, maxs∈Sincorrect
E[R(x, s)] is the maximum ex-

pected value of the reward paid to the malicious computationally-unbounded server if the server

wants to maximize the expected value as much as possible while deceiving the client. This is

because the client outputs an incorrect answer when the server takes the strategy s ∈ Sincorrect. As

a result, the reward gap represents how much benefit the rational server can obtain compared with

the malicious one.

For function problems, we can define the reward gap in a similar way.

C. Approximately sparse quantum circuits

An n-qubit quantum circuit U consists of elementary gates in a universal gate set. In this paper,

the quantum circuit U is denoted as U = uLuL−1 . . . u1 ≡ ∏1
i=L ui, where ui is an elementary

gate in the universal gate set for all i, and L is a polynomial in n. For instance, when we consider

{CNOT,H, T} as a universal gate set, ui is the controlled-NOT gate CNOT , the Hadamard

gate H , or the T gate T . Our argument can be applied to any universal gate set each of whose

7 Even if we replace “unit probability” with “high probability” such as 1− 1/2n
O(1)

and 1− 1/nO(1), the reward gap

in Protocol 2 is still constant.
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elementary gates acts on at most O(logn) qubits. Note that each elementary gate is assumed to be

specified with a polynomial number of bits.

By using the above notation, ǫ-approximately t-sparse polynomial-size quantum circuits are

defined as follows:

Definition 5 (ǫ-approximately t-sparse polynomial-size quantum circuit [44]) Consider an n-

qubit quantum circuit U ≡
∏1

i=L ui with input |0n〉, where L is a polynomial in n, and each ui
is a unitary gate chosen from a certain universal gate set each of whose elementary gates can be

specified with a polynomial number of bits. Let qz ≡ |〈z|U |0n〉|2 be the probability of the quantum

circuit outputting z ∈ {0, 1}n. The quantum circuit U is called ǫ-approximately t-sparse if there

exists a t-sparse vector v = (vz : z ∈ {0, 1}n) such that
∑

z∈{0,1}n |qz − vz| ≤ ǫ, where a vector

is called t-sparse if at most t of its coordinates are non-zero.

Note that in this paper, we assume that t = f(n) and ǫ = 1/g(n) (≤ 1/6) for some polynomials

f(n) and g(n).

D. BQP-complete problem

Among several BQP-complete problems [3–5, 16, 32, 46–49], in this paper, we use the follow-

ing promise problem:

Definition 6 (Q-CIRCUIT [16]) The input is a classical description of an n-qubit quantum cir-

cuit U =
∏1

i=L ui, where ui is chosen from a certain universal gate set each of whose elementary

gates can be specified with a polynomial number of bits, and L is a polynomial in n. If

〈0n|U †(|1〉〈1| ⊗ I⊗n−1)U |0n〉 ≥ 2

3
, (6)

output YES. On the other hand, if

〈0n|U †(|1〉〈1| ⊗ I⊗n−1)U |0n〉 ≤ 1

3
, (7)

output NO. It is guaranteed that the input unitary U always satisfies either Eq. (6) or (7).

III. SUMCHECK-BASED RATIONAL DELEGATED QUANTUM COMPUTING

In this section, we construct two rational delegated quantum computing protocols for estimating

output probabilities of n-qubit quantum circuits, which we call the rational delegated quantum

estimating protocols. In Sec. III A, we consider any n-qubit polynomial-size quantum circuit

with O(logn)-qubit output measurements. We also show that our protocol satisfies conditions

1–3 mentioned in Sec. I. In Sec. III B, we show that our protocol proposed in Sec. III A can be

applied to classically delegate any decision problem in BQP. In Sec. III C, we construct another

protocol for approximately t-sparse n-qubit polynomial-size quantum circuits with n-qubit output

measurements, where t is a polynomial in n.

A. Estimating output probabilities of quantum circuits with a logarithmic number of output

qubits

In this subsection, we consider an n-qubit polynomial-size quantum circuit U with k =
O(logn) output qubits. Let {qz}z∈{0,1}k be the output probability distribution of the quantum

10



circuit U , where

qz ≡ 〈0n|U †(|z〉〈z| ⊗ I⊗n−k)U |0n〉

and I is the two-dimensional identity operator. We show that if the quantum server is rational, the

classical client can efficiently obtain the estimated values {pz}z∈{0,1}k with high probability such

that |pz − qz| ≤ 1/f(n) for any z and any polynomial f(n). Therefore, for example, the classical

client can approximately sample with high probability in polynomial time from the output proba-

bility distribution {qz}z∈{0,1}k of the quantum circuit U . Before proposing our rational delegated

quantum estimating protocol, we calculate qz using the Feynman path integral. Let U =
∏1

i=L ui,
where ui is an elementary gate in a universal gate set for all i, L be a polynomial in n, s(i) be an

n bit string for 1 ≤ i ≤ 2L − 1 except for i = L, and s(L) be an n − k bit string. For simplicity,

we also define s as a shorthand notation of the (2L − 1)n − k bit string s(1)s(2) . . . s(2L−1). The

probability qz is calculated as follows:

qz = 〈0n|U †(|z〉〈z| ⊗ I⊗n−k)U |0n〉

= 〈0n|
(

1
∏

j=L

uj

)†

(|z〉〈z| ⊗ I⊗n−k)

(

1
∏

i=L

ui

)

|0n〉

= 〈0n|u†1





2
∏

j=L

uj





∑

s(j−1)∈{0,1}n

|s(j−1)〉〈s(j−1)|









† 

|z〉〈z| ⊗





∑

s(L)∈{0,1}n−k

|s(L)〉〈s(L)|













2
∏

i=L

ui





∑

s(L+i−1)∈{0,1}n

|s(L+i−1)〉〈s(L+i−1)|







u1|0n〉. (8)

Here, we define

g(z, s) ≡ 〈0n|u†1

(

2
∏

j=L

uj|s(j−1)〉〈s(j−1)|
)†

|zs(L)〉〈zs(L)|
(

2
∏

i=L

ui|s(L+i−1)〉〈s(L+i−1)|
)

u1|0n〉. (9)

From Eqs. (8) and (9),

qz =
∑

s∈{0,1}(2L−1)n−k

g(z, s). (10)

As an important point, given z and s, the function g(z, s) can be calculated in classical polynomial

time. This is because each elementary gate acts on at most O(logn) qubits. Note that since

there are exponentially many terms in Eq. (10), this fact does not contradict the #P-hardness of

calculating output probabilities of quantum circuits [50]. Furthermore, from Eq. (9), the absolute

value |g(z, s)| is upper-bounded by 1. Therefore, 0 ≤ (1 + Re[g(z, s)])/2 ≤ 1, where Re[g(z, s)]
is the real part of g(z, s).

To construct our rational delegated quantum estimating protocol, we use the rational sumcheck

protocol [43]. Let us consider the following problem: given l non-negative integers x1, . . . , xl ∈
{0, . . . ,M − 1}, where M is a positive integer, output

∑l
i=1 xi. The rational sumcheck protocol

enables the client to efficiently delegate this problem to the rational server. The non-negativity of

xi is necessary because the client is required to generate the probability distribution {xi/M, 1 −
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xi/M}. To fit the rational sumcheck protocol to our case, we generalize it for the case of the

complex number xi. As a result, we can set xi = g(z, s) and z to be a certain fixed value. Our

protocol runs as follows (see Fig. 2):

[Protocol 1]

This protocol depends on the number k of measured qubits, a quantum circuit U to be executed

by the server, the number L of elementary gates used in U , the number n of input qubits, the

required precision characterized by f(n), and the required confidence characterized by h(n) (see

Theorem 1).

1. For all z ∈ {0, 1}k, the rational server and the client perform the following steps:

(a) The rational server sends to the client a non-negative real number yz, which is explained

later. (Note that yz is represented by a bit string with logarithmic length; therefore, the

message size from the server to the client is logarithmic.)

(b) The client samples s uniformly at random from {0, 1}(2L−1)n−k.

(c) The client flips a coin that lands heads with probability (1 + Re[g(z, s)])/2. If the coin

lands heads, the client sets bz = 1; otherwise, bz = 0.

(d) The client calculates the reward

R(yz, bz) ≡
1

2k

[

2
yz + 2(2L−1)n−(k+1)

2(2L−1)n−k
bz + 2

(

1− yz + 2(2L−1)n−(k+1)

2(2L−1)n−k

)

(1− bz)

−
(

yz + 2(2L−1)n−(k+1)

2(2L−1)n−k

)2

−
(

1− yz + 2(2L−1)n−(k+1)

2(2L−1)n−k

)2

+ 1

]

,

which is the (slightly modified) Brier’s scoring rule [51]. This scoring rule guarantees

that the expected value of the reward is maximized when yz is equal to the probability of

bz = 1 up to additive and multiplicative factors, which means that yz = aPr[bz = 1] + b
with certain parameters a and b. Then, the client pays the rewardR(yz, bz) to the rational

server.

2. The client calculates

pz ≡
yz

∑

z∈{0,1}k yz
(11)

for all z.

Since the sampling in step (c) can be approximately performed in classical polynomial time as

shown in Appendix A, what the client has to do is simply efficient classical computing. Further-

more, since the repetitions in step 1 can be performed in parallel, this is a one-round protocol.

Note that except for the communication required to pay the reward to the server, Protocol 1 only

requires one-way communication from the server to the client. Since the functions f and h are

parameters of Protocol 1, and k, n, and a classical description of U are inputs to Protocol 1, we

also do not count the communication required to tell them from the client to the server.

We show that pz satisfies
∑

z∈{0,1}k |pz−qz| ≤ 1/f(n) for any fixed polynomial f(n) with high

probability. This means that pz is an approximated value of qz for each z with high probability.

More precisely, we show the following theorem:

12
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FIG. 2: The schematic diagram of Protocol 1. First, the server sends yz to the client in step 1 (a). Second,

in steps 1 (b) and (c), the client chooses bz = 1 or bz = 0 independently of yz . Third, in step 1 (d), the

client pays the reward R(yz, bz) to the server depending on yz and bz . The client and the server repeat these

procedures for all z. Finally, the client calculates {pz}z from {yz}z and accepts them as approximations of

{qz}z .

Theorem 1 Let f(n) and h(n) be any polynomials in n. Let qz = 〈0n|U †(|z〉〈z| ⊗ I⊗n−k)U |0n〉,
and pz be the probability given in Eq. (11). Then, given inputs k, n, and a classical description of

U , Protocol 1 with parameters f(n) and h(n) satisfies

∑

z∈{0,1}k

|pz − qz| ≤
1

f(n)
(12)

with probability of at least 1− e−h(n).

Proof. Before the formal proof, we explain our intuitive idea of the proof. The client’s purpose

is to obtain qz (or its approximation) with high probability. If yz = aqz for a constant a, this

purpose is achieved. This is because the client obtains pz = qz from Eq. (11). Therefore, the goal

of this proof is to show that aqz maximizes the expected value of the reward. (Remember that

the rational server sends yz maximizing the expected value.) By directly calculating the expected

value of the reward R(yz, bz) over bz ∈ {0, 1}, we can show that the expected value is proportional

to −(yz − qz/2)
2 except for terms independent of yz. This implies that yz = qz/2 (the case of

a = 1/2) maximizes the expected value.

The formal proof is as follows. First, we derive the value of yz that maximizes the expected

value of the reward R(yz, bz) over bz ∈ {0, 1}. In this proof, for simplicity, we assume that the

sampling of bz in step (c) can be exactly performed using the method in Appendix A (for the

approximation case, see Appendix B). Let Yz ≡ (yz + 2(2L−1)n−(k+1))/2(2L−1)n−k. The expected
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reward when the server sends yz is

Ebz [R(yz, bz)]

=
1

2k

∑

s∈{0,1}(2L−1)n−k

1

2(2L−1)n−k

{

1 + Re[g(z, s)]

2

[

2Yz − Y 2
z − (1− Yz)

2 + 1
]

+
1− Re[g(z, s)]

2

[

2 (1− Yz)− Y 2
z − (1− Yz)

2 + 1
]

}

=
1

2k

[

qzYz

2(2L−1)n−k−1
+ 1− qz

2(2L−1)n−k
− Y 2

z − (1− Yz)
2 + 1

]

=
1

2k

[

−2

(

Yz −
qz

2(2L−1)n−k+1
− 1

2

)2

+ 2

(

qz

2(2L−1)n−k+1
+

1

2

)2

− qz

2(2L−1)n−k
+ 1

]

=
1

2k

[

− 2

22[(2L−1)n−k]

(

yz −
qz

2

)2

+
3

2
+

2q2z
22[(2L−1)n−k+1]

]

, (13)

where in the second equality, we have used qz =
∑

s∈{0,1}(2L−1)n−k g(z, s) =
∑

s∈{0,1}(2L−1)n−k Re[g(z, s)]. Therefore, the expected reward is uniquely maximized when

yz =
qz

2
.

The BQP server cannot derive the exact value of qz, which is #P-hard in the worst case [50].

However, the BQP server can efficiently estimate qz with polynomial accuracy. More precisely,

for all z, the BQP server can efficiently obtain ηz such that

Pr [|ηz − qz| ≥ ǫ′] ≤ 2e−2Tǫ′2

by sampling from {qz}z∈{0,1}k T times (for the completeness of the paper, we give the concrete

estimation method for qz in Appendix C)8. Therefore, |ηz − qz| ≤ ǫ′ for all z with probability of at

least

(

1− 2e−2Tǫ′2
)2k

≥ 1− 2k+1e−2Tǫ′2 ≥ 1− ek+1−2Tǫ′2 .

If we set ǫ′ = 1/{[(2k+1)f(n)+1]2k} and T = (k+1+h(n))/(2ǫ′2), the total repetition number

2kT becomes a polynomial in n, and the lower-bound on the probability becomes

1− ek+1−2Tǫ′2 = 1− e−h(n).

Therefore, the rational server sends yz = ηz/2 to maximize the expected value of the reward

R(yz, bz) as much as possible.

8 It is unknown whether this estimation method is optimal among all methods that can be performed in quantum

polynomial time. However, we can say that an optimal method works at least as well as this estimation method.

This is sufficient for our purpose.
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Finally, we show that when yz = ηz/2 and |ηz−qz| ≤ ǫ′ for all z,
∑

z∈{0,1}k |pz−qz| ≤ 1/f(n).
From Eq. (11),

pz =
ηz

∑

z∈{0,1}k ηz
≤ qz + ǫ′

1− 2kǫ′
= qz +

qz2
kǫ′ + ǫ′

1− 2kǫ′

and

pz ≥
qz − ǫ′

1 + 2kǫ′
= qz −

qz2
kǫ′ + ǫ′

1 + 2kǫ′
.

Therefore,

|pz − qz| ≤
qz2

kǫ′ + ǫ′

1− 2kǫ′
≤ (2k + 1)ǫ′

1− 2kǫ′
=

1

2kf(n)
.

In conclusion,
∑

z∈{0,1}k |pz − qz| ≤ 1/f(n). �

From Theorem 1, by approximately sampling from {pz}z∈{0,1}k , the client can approximately

sample from {qz}z∈{0,1}k with high probability. Given the values of {pz}z∈{0,1}k , the approximate

sampling from {pz}z∈{0,1}k can be classically performed in polynomial time as shown in Appendix

A. Therefore, as an application of Protocol 1, the classical client can efficiently sample from

probability distributions generated by quantum circuits.

In the above proof, we assume that (1 + Re[g(z, s)])/2 can be exactly represented using

a polynomial number of bits. If this is not the case, the classical client has to approximate

(1 + Re[g(z, s)])/2. As a result, as shown in Appendix B, the expected value of the reward is

maximized when yz = qz/2 + δ, where the real number δ satisfies |δ| ≤ 2−f ′(n) for a polynomial

f ′(n). Therefore, even in the approximation case, the classical client can efficiently obtain the

estimated values of the output probabilities of quantum circuits.

Next, we show the following theorem:

Theorem 2 Let L, n, and k be the number of elementary gates used in the quantum circuit U
to be executed by the server, the number of input qubits, and the number of measured qubits,

respectively. LetR(yz, bz) be the reward function defined in Protocol 1 for z ∈ {0, 1}k, bz ∈ {0, 1},

and any real value yz ∈ [0, 1/2]. In Protocol 1, the total reward
∑

z∈{0,1}k R(yz, bz) is between

3/2 − O(1/2(2L−1)n−k) and 3/2 + O(1/2(2L−1)n−k). Furthermore, the maximum expected value

of the total reward is lower-bounded by 3/2 +O
(

1/22(2L−1)n−k
)

.

Proof. Let Yz = (yz + 2(2L−1)n−(k+1))/2(2L−1)n−k. When bz = 1 and bz = 0, the total rewards
∑

z∈{0,1}k R(yz, bz) are 1/2k
∑

z∈{0,1}k 2Yz(2 − Yz) and 1/2k
∑

z∈{0,1}k 2(1 − Y 2
z ), respectively.

Since the client considers yz to be half of the acceptance probability, we can assume that 0 ≤
yz ≤ 1/2. Therefore, the server should set Yz in the range from 1/2 to 1/2 + 1/2(2L−1)n−k+1.

In this range with n ≥ 1 and L ≥ 1, the total reward
∑

z∈{0,1}k R(yz, bz) is between 3/2 −
O(1/2(2L−1)n−k) and 3/2 +O(1/2(2L−1)n−k).

Here, we again assume that (1 + Re[g(z, s)])/2 can be exactly represented using a polynomial

number of bits. Note that even if this is not the case, a similar argument holds as shown in

Appendix B. From Eq. (13), the maximum expected value of the total reward is

1

2k

∑

z∈{0,1}k

(

3

2
+

2q2z
22[(2L−1)n−k+1]

)

≥ 3

2
+O

(

1

22(2L−1)n−k

)

.

Note that even when yz is an estimated value of qz/2, the expected value of the total reward is

lower-bounded by a constant because
∑

z∈{0,1}k R(yz, bz) ≥ 3/2− O(1/2(2L−1)n−k). �

From this theorem, Protocol 1 satisfies conditions 1–3 in Sec. I.
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B. Decision problems in BQP

In this subsection, by applying Protocol 1 in Sec. III A, we propose a rational delegated quan-

tum computing protocol for decision problems in BQP. To this end, we consider the delegation of

the Q-CIRCUIT problem [16]. Since the Q-CIRCUIT problem is a BQP-complete problem, any

decision problem in BQP can be reduced to the Q-CIRCUIT problem.

We set k = 1 in Protocol 1 in Sec. III A. Then, by performing Protocol 1 only for z = 1, the

classical client can obtain η such that |η−〈0n|U †(|1〉〈1|⊗I⊗n−1)U |0n〉| ≤ 1/f(n) with probability

1 − e−h(n) for any polynomials f(n) and h(n). If η ≥ 2/3 − 1/f(n), the client answers YES; if

η ≤ 1/3 + 1/f(n), the client answers NO. Otherwise, the client answers YES or NO uniformly

at random. This procedure works because the gap between 2/3− 1/f(n) and 1/3 + 1/f(n) is at

least some constant for sufficiently large f(n). The client mistakenly answers only when η does

not satisfy |η − 〈0n|U †(|1〉〈1| ⊗ I⊗n−1)U |0n〉| ≤ 1/f(n). Therefore, the probability of the client

getting a wrong answer is at most e−h(n). This means that the classical client can efficiently solve

the Q-CIRCUIT problem with the help of the rational quantum server.

C. Estimating output probabilities of approximately sparse quantum circuits with a polynomial

number of output qubits

In Sec. III A, we considered the output probability estimation for any n-qubit polynomial-size

quantum circuit U with O(logn) output qubits. In this subsection, we consider the same task

for a restricted class of U with n output qubits. More formally, we consider ǫ-approximately t-
sparse polynomial-size quantum circuits defined in Sec. II C. Simply speaking, they are n-qubit

polynomial-size quantum circuits U , where there exists a t-sparse vector v = (vz : z ∈ {0, 1}n)
such that

∑

z∈{0,1}n |qz − vz| ≤ ǫ for output probabilities qz ≡ |〈z|U |0n〉|2.
To construct our rational delegated quantum estimating protocol, we show the following theo-

rem:

Theorem 3 Let δ = 2−f(n) for any positive polynomial function f(n) in n. For an ǫ-approximately

t-sparse polynomial-size n-qubit quantum circuit, there exists a polynomial-time quantum algo-

rithm that always outputs a list L ≡ {z(1), . . . , z(l)}, where l = ⌊2t/ǫ⌋ and each z(i) (1 ≤ i ≤ l) is

an n-bit string, such that all n-bit strings z satisfying qz ≥ ǫ/t belong to the list L with probability

of at least 1− ǫδ/(2t + ǫ). Here, ⌊·⌋ is the floor function.

Before we show this theorem, we mention a difference between our list L (in Theorem 3) and that

obtained in Theorem 10 in Ref. [44]. The list in Ref. [44] satisfies the property that for all elements

z in the list, qz ≥ ǫ/(2t) holds, which is not necessary for our purpose. Due to this property, it is

difficult to efficiently check whether a given list is correct without failing. By slightly modifying

their construction, we circumvent this difficulty and construct a fixed-size list. The fixed size is

necessary to construct our rational delegated quantum estimating protocol. More precisely, it is

used to show Theorem 4.

Proof. Using the method in Theorem 10 in Ref. [44], the quantum server can efficiently obtain

the list L′ with |L′| ≤ ⌊2t/ǫ⌋ such that with probability of at least 1 − ǫδ/(2t + ǫ), every n-bit

string z satisfying qz ≥ ǫ/t belongs to the list L′. If |L′| = ⌊2t/ǫ⌋, the server sets L′ = L. On

the other hand, if |L′| < ⌊2t/ǫ⌋, the server selects (⌊2t/ǫ⌋ − |L′|) n-bit strings from {z}z /∈L′ in an

arbitrary way and incorporates them into L′ to define the set L. �

We construct a rational protocol that forces the server to send estimated values {ηz}z∈L of

{qz}z∈L. Note that since t and 1/ǫ are polynomials of n, the size |L| of the list is bounded by

a polynomial. Therefore, the estimated values {ηz}z∈L can be represented using at most a poly-
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nomial number of bits. Furthermore, by using the list L, the estimated values {ηz}z∈L can be

obtained in quantum polynomial time. This is straightforward from Appendix C. The rational

protocol can be constructed by modifying Protocol 1 in Sec. III A as follows:

1’. The rational server selects ⌊2t/ǫ⌋ n-bit strings and sends them to the client. Let L̃ be the

set of the ⌊2t/ǫ⌋ n-bit strings. For all z ∈ L̃, the rational server and the client perform the

following steps:

(a) The rational server sends to the client a non-negative real number yz that is equal to

ηz/2.

(b) The client samples s uniformly at random from {0, 1}2(L−1)n.

(c) The client flips a coin that lands heads with probability (1 + Re[g(z, s)])/2. If the coin

lands heads, the client sets bz = 1; otherwise, bz = 0.

(d) The client calculates the reward

R(yz, bz) ≡
1

⌊2t/ǫ⌋

[

2
yz + 22(L−1)n−1

22(L−1)n
bz + 2

(

1− yz + 22(L−1)n−1

22(L−1)n

)

(1− bz)

−
(

yz + 22(L−1)n−1

22(L−1)n

)2

−
(

1− yz + 22(L−1)n−1

22(L−1)n

)2

+ 1

]

. (14)

Then, the client pays the reward R(yz, bz) to the rational server.

2’. The client calculates

pz ≡
yz

∑

z∈L̃ yz
=

ηz
∑

z∈L̃ ηz

for all z ∈ L̃. On the other hand, for all z /∈ L̃, the client sets pz = 0.

Since we assume that t and 1/ǫ are polynomials in n, the number of repetitions of steps (a)–(d) is

bounded by a polynomial. From Eq. (14), in this case, the expected value
∑

z∈L̃ Ebz [R(yz, bz)] of

the total reward is

1

⌊2t/ǫ⌋
∑

z∈L̃

[

−2

(

yz

22(L−1)n
− qz

22(L−1)n+1

)2

+
3

2
+

2q2z
22[2(L−1)n+1]

]

. (15)

When yz = qz/2, Eq. (15) is maximized and a monotonically increasing function of qz in the range

of qz ≥ 0. Note that qz ≥ 0 holds because it is a probability. Therefore, to increase the expected

value of the total reward, the rational server has to include all bit strings whose probabilities are

larger than ǫ/t into the list L̃. Therefore, from Theorem 3 and Appendix C, the rational quantum

server can efficiently generate such list L̃ and {ηz}z∈L̃.

It is worth mentioning that we can obtain the same conclusion as above even when yz is an

estimated value of qz/2, i.e., |yz − qz/2| ≤
√
ǫ′ with probability of at least 1 − δ, where ǫ′ and

δ are 1/nO(1) and 1/2n
O(1)

, respectively. When yz is the estimated value, the server may be able

to increase the expected value of the reward by including a bit string whose probability is small.

Consider the following situations: when the true value is qz = 0.99, the estimated value can

become yz = 0 with a non-zero probability. In this case, the expected value Ebz [R(yz, bz)] is 3/2.

On the other hand, when the true value is qz = 0.01, the estimated value can become yz = 0.01
with a non-zero probability. In this case, the expected value is larger than 3/2. This example

implies that we have to appropriately take the case where the estimation fails into account.

We show the following theorem:
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Theorem 4 Let qz ≡ |〈z|U |0n〉|2 for ǫ-approximately t-sparse polynomial-size quantum circuits

U and z ∈ {0, 1}n. Even if yz is an estimated value of qz/2, all bit strings whose probabilities

are larger than ǫ/t must be included into the list L̃ to maximize the expectation value of the total

reward
∑

z∈L̃R(yz, bz), where R(yz, bz) is defined in Eq. (14).

Proof. Let us assume that an outcome z1 with qz1 ≥ ǫ/t is not included in the list L̃. The list L̃
includes at least one z2 such that qz2 ≤ 1/⌊2t/ǫ⌋ because |L̃| = ⌊2t/ǫ⌋. We show that the server

can increase the expected value of the reward by replacing z2 with z1. This means that the rational

server includes all probabilities larger than ǫ/t into L̃.

From Eq. (14), when qz = qz1 , the expected value E[R(yz1, bz1)] of the reward is lower-bounded

by

1− δ

⌊2t/ǫ⌋

(

− 2ǫ′

22[2(L−1)n+1]
+

3

2
+

2q2z1
22[2(L−1)n+1]

)

+
δ

⌊2t/ǫ⌋

(

− 2

22[2(L−1)n+1]
+

3

2
+

2q2z1
22[2(L−1)n+1]

)

,

where we take the case where the estimation fails into account. On the other hand, when qz = qz2 ,

the expected value E[R(yz2 , bz2)] of the reward is upper-bounded by

1

⌊2t/ǫ⌋

(

3

2
+

2q2z2
22[2(L−1)n+1]

)

.

Here, we set ǫ′ < ǫ2(3t2 + ǫ2 − 4tǫ)/[2t2(2t− ǫ)2]. The gap between these two expected values is

E[R(yz1 , bz1)]− E[R(yz2 , bz2)] ≥ 2
{

(q2z1 − q2z2)− [(1− δ)ǫ′ + δ]
}

⌊2t/ǫ⌋22[2(L−1)n+1]

≥ 2 {ǫ2/t2 − [ǫ/(2t− ǫ)]2 − [(1− δ)ǫ′ + δ]}
⌊2t/ǫ⌋22[2(L−1)n+1]

≥ 2

⌊2t/ǫ⌋22[2(L−1)n+1]

[

ǫ2(3t2 + ǫ2 − 4tǫ)

t2(2t− ǫ)2
− 2ǫ′

]

> 0,

where in the third inequality we have used ǫ′ ≥ δ. The above argument holds even in the approxi-

mation case discussed in Appendix B. �

In the remainder of this section, using the result in Ref. [44], we show that the client can

obtain approximated values of {qz}z∈{0,1}n from {ηz}z∈L. To this end, we first show the following

theorem:

Theorem 5 Let t and 1/ǫ (≥ 6) be any positive polynomials in n and δ = 2−f(n) for any positive

polynomial function f(n) in n. Let Q ≡ {qz}z∈{0,1}n be the output probability distribution of an

ǫ-approximately t-sparse polynomial-time quantum circuit with n input qubits. Given the list L
defined in Theorem 3, a ⌊2t/ǫ⌋-sparse vector {ηz}z∈{0,1}n that satisfies

∑

z∈{0,1}n

|qz − ηz| ≤ 3ǫ

with probability at least 1− δ can be obtained in quantum polynomial time.

The following theorem also holds:

Theorem 6 Parameters ǫ, t, and δ are set as in Theorem 5. Let Q ≡ {qz}z∈{0,1}n be the output

probability distribution of an ǫ-approximately t-sparse polynomial-time quantum circuit with n
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input qubits. Using the ⌊2t/ǫ⌋-sparse vector {ηz}z∈{0,1}n obtained in Theorem 5, it is possible

to efficiently classically compute an ⌊2t/ǫ⌋-sparse probability distribution P ≡ {pz}z∈{0,1}n that

satisfies

∑

z∈{0,1}n

|qz − pz| ≤ 12ǫ

with probability of at least 1− δ.

The combination of Theorems 5 and 6 is the same as Theorem 11 in Ref. [44] except for the type

of list used. The proofs of Theorems 5 and 6 are essentially the same as the proof of Theorem 11

in Ref. [44]. For the completeness of this paper, we give them in Appendices D and E.

From Appendix D, it is known that ηz = 0 for all z /∈ L. Therefore, from Theorem 6, if {ηz}z∈L
is given, the approximate sampling from an output probability distribution of an ǫ-approximately

t-sparse polynomial-size quantum circuit can be performed in classical polynomial time using the

method in Appendix A. Note that although the sampling method in Appendix A is tailored for a

probability distribution {qz}z∈{0,1}k on k = O(logn) bit strings, it works even if {qz}z∈{0,1}k is

replaced with the polynomially sparse probability distribution {ηz}z∈{0,1}n .

The efficient classical simulatability of approximately sparse quantum circuits was explored in

Ref. [44]. However, their classical-simulation algorithm requires some additional constraints for

quantum circuits. In general, approximately sparse quantum circuits are not known to be efficiently

classically simulatable.

IV. MULTI-RATIONAL-SERVER DELEGATED QUANTUM COMPUTING WITH A CON-

STANT REWARD GAP

In this section, we consider the reward gap. Although a large reward gap is, in practice, de-

sirable to incentivize the server to behave optimally, our sumcheck-based protocols have only

exponentially small gaps. The existing rational delegated quantum computing protocols [37] also

have only exponentially small gaps. It is open as to whether a constant (or 1/nO(1)) reward gap

is possible. However, in this subsection, we show that if non-communicating but entangled mul-

tiservers are allowed, we can construct a rational delegated quantum computing protocol with a

constant reward gap for BQP problems while keeping the first three conditions 1–3 in Sec. I. To

this end, we utilize multiprover interactive proof systems for BQP. In some multiprover interac-

tive proof systems proposed for BQP, the computational ability of the honest provers is bounded

by BQP but that of the malicious provers is unbounded [19, 22, 24, 26–29]9. Simply speaking,

these multiprover interactive proof systems satisfy the following theorem:

Theorem 7 ([19, 22–29]) For any language L ∈BQP, there exists a poly(|x|)-time classical ver-

ifier V interacting with a constant number of non-communicating but entangled provers, such that

for inputs x,

1. if x ∈ L, then there exists a poly(|x|)-time quantum provers’ strategy in which V accepts

with probability at least 2/3

2. if x /∈ L, then for any (computationally-unbounded) provers’ strategy, V accepts with prob-

ability at most 1/3.

9 In this paper, we focus on multiprover interactive proof systems that consist of a constant number of provers. Some

multiprover interactive proof systems [23, 25] require polynomially many provers.
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Here, |x| denotes the size (i.e., the bit length) of x.

We denote the above interaction between V and provers as πL for the language L ∈BQP.

Using the above multiprover interactive proof systems, we construct the following rational

delegated quantum computing protocol10:

[Protocol 2]

This protocol depends on the input size |x|, the number M of servers, and the interaction πL.

1. For a given BQP language L and an instance x, the first server among M rational ones sends

b ∈ {0, 1} to the client. As shown in Theorem 8, if the server is rational, b = 1(0) when x is

in L (x is not in L).

2. If b = 1, the client and M servers simulate πL for the language L and instance x; other-

wise, the client and M servers simulate πL̄ for the complement L̄ and the instance x. More

precisely, the client and servers simulate the verifier and provers in πL or πL̄, respectively.

3. The client pays reward R = 1/M to each of the M servers if the simulated verifier accepts.

On the other hand, if the simulated verifier rejects, the client pays R = 0.

4. The client concludes x ∈ L if b = 1; otherwise, the client concludes x /∈ L.

Note that since BQP is closed under complement, πL̄ exists for the complement L̄. Here, we

notice that even if the simulated verifier accepts, each server can obtain only 1/M as the reward.

However, since the number M of the servers is two in the multiprover interactive proof systems in

Refs. [22, 24, 26, 29], the reward 1/M paid to each server can be made 1/2. Particularly, when

we use multiprover interactive proof systems in Refs. [26, 29] among them, the number of rounds

in Protocol 2 becomes a constant.

We clarify the meaning of “rational” in multi-rational-server delegated quantum computing. In

this computing model, we can consider at least two possible definitions of “rational.” One is that

each server wants to maximize each reward, and the other is that all servers want to collabora-

tively maximize their total reward. Fortunately, in Protocol 2, these two definitions are equivalent.

In other words, the total reward is maximized if and only if the reward paid to each server is

maximized. Hereafter, we therefore do not distinguish between these two definitions.

Before we show that Protocol 2 has a constant reward gap, we show that if the servers are

rational, the client’s answer is correct. More formally, we prove the following theorem:

Theorem 8 Let b ∈ {0, 1}, L ∈BQP, and x be an instance of L. In Protocol 2, if the servers are

rational, i.e., take the strategy that maximizes the expectation value of the reward, then b = 1 if

and only if x ∈ L.

Proof. Before the formal proof, we explain our proof idea. From Protocol 2, we can know that

the reward is paid to the servers only when the simulated verifier accepts. This implies that the

servers would like to select an interaction from πL and πL̄ such that the verifier accepts with higher

probability. From Theorem 7, when x ∈ L (x /∈ L), the verifier in πL (πL̄) accepts with higher

probability than that in the other. Therefore, when x ∈ L (x /∈ L), the first server sends b = 1
(b = 0) to the client.

The formal proof is as follows. First, we consider the YES case, i.e., the case where x is in L.

If b = 1, the client and the servers perform πL for the language L and the instance x. Therefore,

when the servers simulate the honest provers in πL, the client accepts with probability of at least

10 This construction is essentially the same as that used in Ref. [38] to show IP⊆RIP. Here, RIP is the complexity

class of decision problems that can be solved by rational interactive proof systems whose prover’s computational

power is unbounded.
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2/3. On the other hand, if b = 0, the client accepts with probability less than or equal to 1/3. This

is because x is a NO instance for the complement L̄, i.e., x /∈ L̄. In πL̄, when the answer is NO, the

acceptance probability is at most 1/3 for any provers’ strategy. Since the completeness-soundness

gap 1/3 is a positive constant, one of the rational servers sends b = 1 if x ∈ L. By following the

same argument, one of them sends b = 0 when x /∈ L. �

From this proof, we notice that the reward gap has the same value as the completeness-

soundness gap11. Protocol 2 has a 1/3 reward gap, which is constant. Furthermore, it can be

straightforwardly shown that Protocol 2 also satisfies conditions 1–3 mentioned in Sec. I as fol-

lows. Since the total reward M × R paid to M servers is 0 or 1, the first and second conditions

are satisfied. When the servers behave rationally, the client accepts with probability at least 2/3.

Therefore, the expected value of the total reward paid to the rational servers is at least 2/3, which

satisfies the third condition.

V. RELATION BETWEEN RATIONAL AND ORDINARY DELEGATED QUANTUM COMPUT-

ING PROTOCOLS

In Sec. IV, by incorporating ordinary delegated quantum computing into rational delegated

quantum computing, we have shown that the four conditions can be simultaneously satisfied. In

this section, we consider the reverse direction, i.e., constructing ordinary delegated quantum com-

puting protocols from rational delegated quantum computing protocols. By combining this con-

struction with the result in Sec. IV, we obtain an equivalence (under a certain condition) between

these two types of delegated quantum computing. Note that in ordinary ones, the server’s ability

is unbounded in NO cases (i.e., when x /∈ L).

To construct ordinary delegated quantum computing protocols from rational ones, we consider

the general poly(|x|)-round rational delegated quantum computing protocol defined in Defini-

tion 3, which we call RDQC for short. By applying two additional conditions for RDQC, we

define constrained RDQC as follows:

Definition 7 Let cYES be a positive constant defined in Eq. (2). Let s, Sincorrect, and R(s, x) be the

server’s strategy, the set of the server’s strategies that make the client output an incorrect answer

with unit probability, and a reward function depending on s and an instance x of L, respectively.

For L ∈BQP, the constrained RDQC protocol is an RDQC protocol defined in Definition 3 such

that

1. There exists a classically efficiently computable positive polynomial f(|x|) such that

cYES −maxs∈Sincorrect,x/∈LE[R(s, x)] ≥
1

f(|x|), (16)

2. The upper-bound c of the reward is classically efficiently computable.

11 Precisely speaking, since the computational power of the server is bounded by BQP, the server sends b = 0(1) with

an exponentially small probability when the correct answer is YES (NO). Therefore, the finally obtained reward gap

is decreased by 1/2n
O(1)

from the original completeness-soundness gap. However, this gap is negligible because the

original completeness-soundness gap is a constant. Note that we say a function f(x) negligible if |f(x)| < 1/p(x)

holds for any polynomial function p(x) and all sufficiently large x.
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The first condition was introduced in Ref. [42]. It is worth mentioning that the second condition

is satisfied in our sumcheck-based rational protocols, while the first condition is not. Note that the

left-hand side of Eq. (16) is not the reward gap.

We show that an ordinary delegated quantum computing protocol with a single BQP server and

a single BPP client can be constructed from any constrained RDQC protocol. This means that if

we can construct a constrained RDQC protocol, then we can affirmatively solve the open problem

of whether a classical client can efficiently delegate universal quantum computing to a quantum

server while efficiently verifying his/her integrity. To this end, we show the following theorem:

Theorem 9 The function f(|x|) and the parameter c are set as in Definition 7. If a language

L in BQP has a k-round constrained RDQC protocol, then L has a k-round interactive proof

system with the completeness-soundness gap 1/(cf(|x|)) between an honest BQP prover and a

BPP verifier.

The proof is essentially the same as that of Theorem 4 in Ref. [42]. We defer it to Appendix F.

As a corollary from Theorem 9, it seems that a constant-round constrained RDQC protocol

cannot exist for BQP. More concretely, we obtain the following corollary:

Corollary 1 If there exists a constant-round constrained RDQC protocol for BQP, then BQP⊆
∏p

2.

Proof. We use essentially the same argument as in Ref. [19]. From Theorem 9, if there exists a

k-round constrained RDQC protocol for BQP, then BQP is contained in IP[k], which is a class

of decision problems having a k-round interactive proof system. From known results [52–54],

IP[k] ⊆AM[k + 2] =AM[2] ⊆
∏p

2 with a constant k. �

Given the oracle separation between BQP and PH [41], the inclusion BQP⊆
∏p

2 is considered

unlikely.

In Theorem 9, we show that a constrained RDQC protocol can be converted to an ordinary

delegated quantum computing protocol. We show that the reverse conversion is also possible

using the idea in Sec. IV.

Theorem 10 If a language L in BQP has an interactive proof system with an honest BQP prover

and a BPP verifier, then L has a constrained RDQC protocol whose reward gap is exponentially

close to the completeness-soundness gap of the original interactive proof system.

Proof. First, we explain our proof idea for clarity. From the assumption, we have an interactive

proof system with an honest BQP prover and a BPP verifier. By replacing the multiprover inter-

active proof system in the argument of Sec. IV with this interactive proof system, we can construct

a RDQC protocol. The remaining task is to show that it satisfies Eq. (16). This construction con-

verts the completeness-soundness gap in the original protocol into the gap in Eq. (16) with almost

no changes in the size of the gap. It implies that the resultant gap is larger than the inverse of any

positive polynomial in |x|.
The formal proof is as follows: Let assume that any language L in BQP has an interactive

proof system with an honest BQP prover and a BPP verifier. In other words, for any language

L ∈BQP, there exists a polynomial-time classical verifier interacting with a prover, such that for

inputs x, if x ∈ L, then there exists a BQP prover’s strategy, where the verifier accepts with

probability of at least c′, and if x /∈ L, then for any computationally-unbounded prover’s strategy,

the verifier accepts with probability of at most s′. Here, c′ − s′ is at least a constant. We denote

this interaction between the prover and the verifier as π̃L for the language L ∈BQP. We simply

replace the multiprover interactive proof system in the argument of Sec. IV with the interactive

proof system for BQP. As a result, we obtain the following RDQC protocol for BQP:

1. For a given BQP language L and an instance x, the rational server sends b ∈ {0, 1} to the

client.
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2. If b = 1, the client and server simulate π̃L for the language L and instance x; otherwise, they

simulate π̃L̄ for the complement L̄ and the instance x.

3. The client pays reward R = 1 to the server if the simulated verifier accepts. On the other

hand, if the simulated verifier rejects, the client pays R = 0.

4. The client concludes x ∈ L if b = 1; otherwise, the client concludes x /∈ L.

Note that since BQP is closed under complement, π̃L̄ exists for the complement L̄.

Since the upper-bound of the reward is obviously one, the remaining task is to show that the

constructed RDQC protocol satisfies Eq. (16). Let c′ and s′ be the completeness and soundness

parameters of the interactive proof system for BQP, respectively. From the construction, if the

server is rational, b = 1(0) with probability exponentially close to one when x ∈ L (x /∈ L).

Therefore, cYES and maxs∈Sincorrect,x/∈LE[R(s, x)] are identical with c′(1−o(1)) and s′, respectively.

As a result, cYES −maxs∈Sincorrect,x/∈LE[R(s, x)] = c′(1− o(1))− s′ > 1/poly(|x|).
By using the similar argument, we can also show that the reward gap is exponentially close

to c′ − s′. For any x, the rational server sends b = 1(0) with probability exponentially close to

one when x ∈ L (x /∈ L). Therefore, the maximized expected value of the reward is at least

exponentially close to c′. On the other hand, to make the client output an incorrect answer, the

server has to send b = 0(1) when x ∈ L (x /∈ L). In this case, the expected value of the reward is

at most s′. From the above argument, the reward gap is exponentially close to c′ − s′. �

From Theorems 9 and 10, constrained RDQC and ordinary delegated quantum computing with an

honest BQP prover and a BPP verifier are convertible from one to the other and vice versa. As an

interesting observation from a reviewer of this paper, these conversions can be done even if Eq. (4)

is removed from Definition 3.

Finally, by applying Theorems 9 and 10, we give the following amplification method for the

reward gap:

Corollary 2 The reward gap of the constrained RDQC can be efficiently amplified to a constant

from any value.

Proof. First, we convert a constrained RDQC protocol, whose reward gap is at most some constant,

to an interactive proof system for BQP using Theorem 9. Then using the standard amplification

method for the completeness-soundness gap (i.e., the repetition and the majority vote) [55], we

obtain the interactive proof system with a constant completeness-soundness gap. Finally, using

Theorem 10, we convert it to another constrained RDQC protocol. From the conversion method

used in the proof of Theorem 10, it is obvious that conditions 1–3 in Sec. I and conditions 1–2

in Definition 7 are satisfied. Since the finally obtained reward gap is exponentially close to the

completeness-soundness gap in this conversion, the finally obtained constrained RDQC protocol

has a constant reward gap. �

As an interesting point, this amplification method works even if the original constrained RDQC

protocol has only an exponentially small reward gap. This is because the original constrained

RDQC protocol satisfies Eq. (16). Note that since the finally obtained constrained RDQC protocol

is no longer a one-round one, Corollary 2 circumvents the no-go result in Ref. [37].

VI. CONCLUSION

We conclude this paper by discussing another way of achieving a constant reward gap and

presenting our outlook.
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A. Discussion

An idea similar to that in Sec. IV can be used to construct a single-server rational delegated

quantum computing protocol with a constant reward gap for BQP if we assume that the LWE prob-

lem is hard for polynomial-time quantum computing. Note that the hardness of the LWE problem

is widely accepted in the fields of quantum cryptography [34–36] and modern cryptography [56].

To this end, we utilize Mahadev’s result in Ref. [34]. Recently, for all BQP problems, Mahadev

has constructed an interactive argument system with a constant completeness-soundness gap under

the hardness assumption on LWE problems. In other words, for any language L ∈BQP, there ex-

ists a polynomial-time classical verifier interacting with a polynomial-time quantum prover, such

that for inputs x, if x ∈ L, then there exists a BQP prover’s strategy, where the verifier accepts

with probability of at least c′, and if x /∈ L, then for any BQP prover’s strategy, the verifier accepts

with probability of at most s′. Here, c′ − s′ is at least a constant. We denote this interaction be-

tween the prover and verifier as π′
L for the language L ∈BQP. In Mahadev’s interactive argument

system, the prover’s computational ability is bounded by polynomial-time quantum computing

regardless of whether x ∈ L or x /∈ L.

To construct a single-server rational delegated quantum computing protocol with a constant

reward gap for BQP, we simply replace the multiprover interactive proof system in the argument

in Sec. IV with Mahadev’s interactive argument system as follows:

[Protocol 3]

This protocol depends on the instance size |x| and the interaction π′
L.

1. For a given BQP language L and an instance x, the rational server sends b ∈ {0, 1} to the

client.

2. If b = 1, the client and server simulate π′
L for the language L and instance x; otherwise, they

simulate π′
L̄

for the complement L̄ and the instance x.

3. The client pays reward R = 1 to the server if the simulated verifier accepts. On other hand,

if the simulated verifier rejects, the client pays R = 0.

4. The client concludes x ∈ L if b = 1; otherwise, the client concludes x /∈ L.

Note that since BQP is closed under complement, π′
L̄

exists for the complement L̄. Furthermore,

since Mahadev’s interactive argument system is a constant-round protocol, Protocol 3 is also a

constant-round one.

For clarity, we remark that the above constructed rational delegated quantum computing pro-

tocol does not work if the server’s computational ability is unbounded. This comes from the

definition of the interactive argument system–if the malicious prover’s computational ability is

unbounded, the malicious prover may be able to make the verifier conclude YES with a high

probability when the correct answer is NO.

From the proof of Theorem 8, we know that the reward gap is exponentially close to the

completeness-soundness gap. Since Mahadev’s interactive argument system has a constant

completeness-soundness gap, the reward gap of Protocol 3 is constant. Furthermore, since the

completeness parameter c′ is negligibly close to one in Mahadev’s interactive argument system,

Protocol 3 also satisfies conditions 1–3 mentioned in Sec. I.

We here again note that in the LWE-based rational delegated quantum computing protocol,

elements in the set Sincorrect are restricted to strategies that can be performed by a polynomial-time

quantum server. On the other hand, in other rational protocols presented in this paper, such a

restriction is not necessary.
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B. Outlook

In this paper, we have considered the integrity of cloud quantum computing. Another impor-

tant notion in cloud quantum computing is blindness, which means to delegate quantum comput-

ing to a remote server while hiding inputs, outputs, and quantum algorithms. When we require

information-theoretic security for cloud quantum computing, classical computing seems not to be

sufficient for the client [57–59]. On the other hand, if we assume that LWE problems are dif-

ficult for efficient quantum computing, the classical client can perform verifiable blind quantum

computing that is secure against a polynomial-time quantum adversary [35, 36]. Although the ra-

tional protocols proposed in this paper are not blind, it would be interesting to consider whether a

classical-client verifiable blind quantum computing protocol can be constructed when we assume

that a server is rational.
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VIII. APPENDIX A: APPROXIMATE SAMPLING FROM A KNOWN PROBABILITY DISTRI-

BUTION

In this Appendix, we give an efficient method to approximately sample from a known proba-

bility distribution {ts}s∈{0,1}k , where k is at most O(logn). In step (c) of Protocol 1 in Sec. III A,

k = 1 and t0 = (1 + Re[g(z, s)])/2. If the client performs the approximate sampling from

{pz}z∈{0,1}k in Eq. (11), k = O(logn) and ts = ps. The following algorithm approximately

samples from {ts}s∈{0,1}k in classical polynomial time:

1. Approximate each ts using m(≥ 2k) bits as follows.

(a) Find a single smax such that tsmax ≥ ts for any s 6= smax.

(b) For all s except for smax, the probability ts is approximated as the form

t̃s ≡
m
∑

j=1

2−ja
(s)
j (17)

that satisfies |t̃s− ts| ≤ 2−m, and a
(s)
j ∈ {0, 1}. For smax, t̃smax ≡ 1−

∑

s 6=smax
t̃s, which

can also be represented as the form of Eq. (17).

2. Uniformly and randomly generate an m-bit string w1 . . . wm ∈ {0, 1}m.
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3. Output s such that

∑

y<s

t̃y ≤
m
∑

j=1

2−jwj <
∑

y≤s

t̃y,

where y < s and y ≤ s if
∑m

j=1 2
jyj <

∑m
j=1 2

jsj and
∑m

j=1 2
jyj ≤

∑m
j=1 2

jsj , respectively.

Here, yj and sj are the jth bits of the m-bit strings y and s, respectively.

To show that this algorithm approximately samples from {ts}s∈{0,1}k , we derive an upper-bound

of
∑

s∈{0,1}k |ts − t̃s|. From |t̃s − ts| ≤ 2−m for all s except for smax,

ts − 2−m ≤ t̃s ≤ ts + 2−m

∑

s 6=smax

(ts − 2−m) ≤
∑

s 6=smax
t̃s ≤

∑

s 6=smax

(ts + 2−m)

(1− tsmax)− (2k − 1)2−m ≤ 1− t̃smax ≤ (1− tsmax) + (2k − 1)2−m

tsmax − (2k − 1)2−m ≤ t̃smax ≤ tsmax + (2k − 1)2−m.

Therefore,
∑

s∈{0,1}k |ts − t̃s| ≤ (2k − 1)21−m. This means that for polynomially increasing m,

the algorithm can sample from {ts}s∈{0,1}k with exponential precision. Here, we note that t̃smax is

not negative because tsmax ≥ 1/2k and m ≥ 2k.

IX. APPENDIX B: APPROXIMATION CASE

In this Appendix, we consider the case where (1+Re[g(z, s)])/2 cannot be exactly represented

using a polynomial number of bits. In this case, using the method in Appendix A, the classical

client can sample from {t̃0, t̃1} with t̃0 − (1 + Re[g(z, s)])/2 = δ and t̃1 = 1 − t̃0. Here, the real

number δ can be set to satisfy |δ| ≤ 2−f ′(n)−(2L−1)n+k with any polynomial f ′(n). Therefore,

2k × Ebz [R(yz, bz)]

=
∑

s∈{0,1}(2L−1)n−k

1

2(2L−1)n−k

{

(

1 + Re[g(z, s)]

2
+ δ

)

[

2Yz − Y 2
z − (1− Yz)

2 + 1
]

+

(

1− Re[g(z, s)]

2
− δ

)

[

2 (1− Yz)− Y 2
z − (1− Yz)

2 + 1
]

}

= −2

(

yz

2(2L−1)n−k
− qz + 2(2L−1)n−k+1δ

2(2L−1)n−k+1

)2

+
3

2
+

1

2

(

qz + 2(2L−1)n−k+1δ

2(2L−1)n−k

)2

. (18)

As a result, the expected value Ebz [R(yz, bz)] of the reward is uniquely maximized when

yz =
qz

2
+ 2(2L−1)n−kδ ≡ ymax.

Since |δ| ≤ 2−f ′(n)−(2L−1)n+k, |ymax− qz/2| ≤ 2−f ′(n). This means that even in the approximation

case, the rational server sends ηz that is polynomially close to ymax and thus polynomially close to

qz/2.

Furthermore, from Eq. (18), the expected value
∑

z∈{0,1}k Ebz [R(yz, bz)] of the total reward is

lower-bounded by 3/2 + O(1/22(2L−1)n−k). Therefore, even in the approximation case, Protocol

1 satisfies the third condition in Sec. I.
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X. APPENDIX C: ESTIMATION OF qz

In this Appendix, we show that the quantum server can efficiently estimate qz with polynomial

accuracy with high probability. The server performs the following procedure:

1. Generate U |0n〉, then measure the first k qubits in the computational basis.

2. Output X = 1 if the outcome in step 1 is z; otherwise, output X = 0.

3. Repeat steps 1 and 2 T times, then calculate ηz =
∑T

i=1Xi/T .

Using the Chernoff-Hoeffding bound [60], we immediately obtain

Pr [|ηz − qz| ≥ ǫ′] ≤ 2e−2Tǫ′2.

Note that this procedure works for any k (e.g., k = O(logn) and k = n).

XI. APPENDIX D: THE PROOF OF THEOREM 5

In this Appendix, we give the proof of Theorem 5.

Proof. We use exactly the same argument as in Ref. [44]. First, using the method in Appendix C

with

ǫ′ ≤ ǫ

l

T =
1

2ǫ′2
log

2(2t+ ǫ)

ǫδ
,

it is possible to efficiently obtain ηz for each z ∈ L such that |ηz − qz| ≤ ǫ′ with probability of at

least 1− ǫδ/(2t+ ǫ). Therefore, we obtain a vector ηL = (ηz : z ∈ L) such that |ηz − qz| ≤ ǫ′ for

all z ∈ L and the list L includes all z such that qz ≥ ǫ/t, with probability of at least

[

1− ǫδ

2t+ ǫ

]1+l

≥ 1− (1 + l)
ǫδ

2t + ǫ
≥ 1− δ.

Setting ηz to zero for all z /∈ L and combining them with {ηz}z∈L, we define the ⌊2t/ǫ⌋-sparse

vector η ≡ (ηz : z ∈ {0, 1}n).
The task left is to show that

∑

z∈{0,1}n |ηz − qz| ≤ 3ǫ when |ηz − qz| ≤ ǫ′ for all z ∈ L. To

show this, we define At ⊆ {0, 1}n as a subset of n-bit strings such that |At| = t, and qz ≥ qy
for any z ∈ At and any y /∈ At. We also define Q̃ ≡ (q̃z : z ∈ {0, 1}n) as a vector where

q̃z = qz when z ∈ At; otherwise, q̃z = 0. It is straightforward to show that for any t-sparse vector

v = (vz : z ∈ {0, 1}n),
∑

z∈{0,1}n |q̃z − qz| ≤
∑

z∈{0,1}n |vz − qz|. Therefore, from Definition 5,

∑

z∈{0,1}n

|q̃z − qz| ≤ ǫ. (19)

From Eq. (19) and qz ≥ ǫ/t ⇒ z ∈ L, which is the property of the list L, when |ηz − qz| ≤ ǫ′ for
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all z ∈ L,

∑

z∈{0,1}n

|ηz − qz| =
∑

z∈L

|ηz − qz|+
∑

z /∈L

qz

≤ lǫ′ +
∑

z /∈L

|qz − q̃z|+
∑

z /∈L

q̃z

≤ ǫ+ ǫ+ |At|
ǫ

t
= 3ǫ.

�

XII. APPENDIX E: THE PROOF OF THEOREM 6

In this Appendix, we give the proof of Theorem 6.

Proof. The argument is the same as in Ref. [44]. In this proof, we assume that |ηz − qz| ≤ ǫ′ for all

z ∈ L. From the proof of Theorem 5, this assumption is true with probability of at least 1− δ. We

define pz as ηz/(
∑

z∈{0,1}n ηz). Since {ηz}z∈{0,1}n is ⌊2t/ǫ⌋-sparse, and t and 1/ǫ are polynomials

in n, the calculation of the denominator can be performed in classical polynomial time. Since
∑

z∈{0,1}n |ηz − qz| ≤ 3ǫ, we obtain 1− 3ǫ ≤∑z∈{0,1}n ηz ≤ 1 + 3ǫ. Therefore,

∑

z∈{0,1}n

|pz − qz| =
∑

z∈{0,1}n

∣

∣

∣
ηz −

(

∑

z′∈{0,1}n ηz′
)

qz

∣

∣

∣

∑

z′∈{0,1}n ηz′

≤
∑

z∈{0,1}n

∣

∣

∣
ηz −

(

∑

z′∈{0,1}n ηz′
)

qz

∣

∣

∣

1− 3ǫ

≤
∑

z∈{0,1}n

|ηz − qz|
1− 3ǫ

+
∑

z∈{0,1}n

∣

∣

∣
1−

∑

z′∈{0,1}n ηz′
∣

∣

∣
qz

1− 3ǫ

≤ 3ǫ+ 3ǫ

1− 3ǫ
≤ 12ǫ,

where we have used ǫ ≤ 1/6 to derive the last inequality. �

XIII. APPENDIX F: THE PROOF OF THEOREM 9

In this Appendix, we give the proof of Theorem 9

Proof. We use the same argument used in Ref. [42]. The prover and the verifier perform the

following procedure:

1. The prover and the verifier simulate the constrained RDQC protocol except for paying the

reward.

2. The verifier calculates the value of the reward R.
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3. If o = 1, the verifier accepts with probability R/c. Otherwise, the verifier rejects.

First, assume that x ∈ L. From Definition 3, if the prover decides a strategy s following the

distribution D′
YES, the verifier’s acceptance probability pacc is

pacc =
Es∼D′

YES
[R(s, x)]

c
≥ cYES

c
. (20)

Then assume that x /∈ L. If the prover takes a strategy s0 that makes the verifier set o = 0, the

acceptance probability is pacc = 0. On the other hand, if the prover takes a strategy s1 that makes

the verifier set o = 1,

pacc ≤
maxs1∈Sincorrect,x/∈LE[R(s1, x)]

c
. (21)

From Eqs. (16), (20), and (21), the completeness-soundness gap (cYES −
maxs1∈Sincorrect,x/∈LE[R(s1, x)])/c is lower bounded by 1/(cf(|x|)) > 1/poly(|x|). �
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