Skip to main content

Classification of PTSD and Non-PTSD Using Cortical Structural Measures in Machine Learning Analyses—Preliminary Study of ENIGMA-Psychiatric Genomics Consortium PTSD Workgroup

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

Classification and prediction of posttraumatic stress disorder (PTSD) based on brain imaging measures is important because it could aid in PTSD diagnosis and clinical management of PTSD. The goal of the present study was to test the effectiveness of using cortical morphological measures (i.e. volume, thickness, and surface area) to classify PTSD cases and controls on 3571 individuals from the ENIGMA-Psychiatric Genomics Consortium PTSD Workgroup, the largest PTSD neuroimaging dataset to date. We constructed 6 feature sets from different demographic variables (age and sex) and cortical morphological measures and used four machine learning algorithms for classification: logistic regression, random forest, support vector machine, and multi-layer perceptron. We found that classifiers trained using only cortical morphological measures (any one of volume, thickness, or surface area) performed better than classifiers trained using only demographic variables. Among all 6 feature sets, combining demographic variables and all three cortical morphological measures yielded the best prediction accuracy, with area under the receiver operating characteristic curve (ROC AUC) scores ranging from 0.615 for logistic regression to 0.648 for random forest. These findings suggest that using cortical morphological measures only has modest prediction power for PTSD classification. Future studies that wish to produce clinically and practically significant findings should consider using whole brain morphological measures, as well as incorporating other neuroimaging modalities and relevant clinical and behavioral symptoms.

B. O'Leary and C.-H. Shih---Contributed equally.

Contributing authors are listed in https://drive.google.com/file/d/1wO-WeUYGB_gWbFh5LIQsUP7H7ckEjeo1/view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sareen, J.: Posttraumatic stress disorder in adults: impact, comorbidity, risk factors, and treatment. Can. J. Psychiatry 59, 460–467 (2014). https://doi.org/10.1177/070674371405900902

    Article  Google Scholar 

  2. Liberzon, I., Wang, X., Xie, H.: Brain structural abnormalities in posttraumatic stress disorder and relations with sleeping problems. In: Vermetten, E., Germain, A., Neylan, T.C. (eds.) Sleep and Combat-Related Post Traumatic Stress Disorder, pp. 145–167. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7148-0_12

    Chapter  Google Scholar 

  3. Eckart, C., Stoppel, C., et al.: Structural alterations in lateral prefrontal, parietal and posterior midline regions of men with chronic posttraumatic stress disorder. J. Psychiatry Neurosci. 36, 176 (2011)

    Article  Google Scholar 

  4. Rauch, S.L., et al.: Selectively reduced regional cortical volumes in post-traumatic stress disorder. NeuroReport 14, 913–916 (2003)

    Article  Google Scholar 

  5. Kitayama, N., Quinn, S., Bremner, J.D.: Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. J. Affect. Disord. 90, 171–174 (2006)

    Article  Google Scholar 

  6. Chao, L., Weiner, M., Neylan, T.: Regional cerebral volumes in veterans with current versus remitted posttraumatic stress disorder. Psychiatry Res. Neuroimaging 213, 193–201 (2013)

    Article  Google Scholar 

  7. Liberzon, I., Abelson, J.L.: Context processing and the neurobiology of post-traumatic stress disorder. Neuron 92, 14–30 (2016). https://doi.org/10.1016/j.neuron.2016.09.039

    Article  Google Scholar 

  8. Garfinkel, S.N., et al.: Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J. Neurosci. 34, 13435–13443 (2014)

    Article  Google Scholar 

  9. Greco, J.A., Liberzon, I.: Neuroimaging of fear-associated learning. Neuropsychopharmacol. 41, 320–334 (2016)

    Article  Google Scholar 

  10. Kessler, R.C., et al.: How well can post-traumatic stress disorder be predicted from pre-trauma risk factors? an exploratory study in the WHO World Mental Health Surveys. World Psychiatry 13, 265–274 (2014)

    Article  Google Scholar 

  11. Ditlevsen, D.N., Elklit, A.: The combined effect of gender and age on post traumatic stress disorder: do men and women show differences in the lifespan distribution of the disorder? Ann. Gen. Psychiatry 9, 32 (2010). https://doi.org/10.1186/1744-859X-9-32

    Article  Google Scholar 

  12. Galatzer-Levy, I.R., Karstoft, K.-I., Statnikov, A., Shalev, A.Y.: Quantitative forecasting of PTSD from early trauma responses: a machine learning application. J. Psychiatry Res. 59, 68–76 (2014)

    Article  Google Scholar 

  13. Mor, N.S., Dardeck, K.L.: Quantitative forecasting of risk for PTSD using ecological factors: a deep learning application. J. Soc. Behav. Health Sci. 12, 4 (2018)

    Google Scholar 

  14. Choi, J.S., Lee, E., Suk, Hl: Regional abnormality representation learning in structural MRI for AD/MCI diagnosis. In: Shi, Y., Suk, Hl, Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 64–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_8

    Chapter  Google Scholar 

  15. A. Nunes, et al: Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group. Mol. Psychiatry, 1–14 (2018). https://doi.org/10.1038/s41380-018-0228-9

  16. Lee, J.S., et al.: Machine learning-based individual assessment of cortical atrophy pattern in alzheimer’s disease spectrum: development of the classifier and longitudinal evaluation. Sci. Rep. 8, 4161 (2018)

    Article  Google Scholar 

  17. Menikdiwela, M., Nguyen, C., Shaw, M.: Deep learning on brain cortical thickness data for disease classification. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–5. IEEE (2018)

    Google Scholar 

  18. Ramos-Lima, L.F., Waikamp, V., Antonelli-Salgado, T., Passos, I.C., Freitas, L.H.M.: The use of machine learning techniques in trauma-related disorders: a systematic review. J. Psychiatr. Res. 121, 159–172 (2020). https://doi.org/10.1016/j.jpsychires.2019.12.001

    Article  Google Scholar 

  19. Gosnell, S.N., Fowler, J.C., Salas, R.: Classifying suicidal behavior with resting-state functional connectivity and structural neuroimaging. Acta Psychiatry, Scand (2019)

    Book  Google Scholar 

  20. Kessler, R.C., et al.: Predicting suicides after outpatient mental health visits in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). Mol. Psychiatry. 22, 544–551 (2017)

    Article  Google Scholar 

  21. Fischl, B.: FreeSurfer. NeuroImage. 62, 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  22. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 31, 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  Google Scholar 

  23. Genetics Protocols «  ENIGMA, (n.d.). http://enigma.ini.usc.edu/protocols/genetics-protocols/. Accessed 15 June 2020

  24. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  26. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  27. Kingma, D.P., Ba, J., Adam: A method for stochastic optimization. ArXiv14126980 Cs (2017). http://arxiv.org/abs/1412.6980

  28. Hajek, T., Cooke, C., Kopecek, M., Novak, T., Hoschl, C., Alda, M.: Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study. J. Psychiatry Neurosci. JPN. 40, 316–324 (2015). https://doi.org/10.1503/jpn.140142

    Article  Google Scholar 

  29. Costafreda, S.G., Chu, C., Ashburner, J., Fu, C.H.: Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 4, e6353 (2009)

    Article  Google Scholar 

  30. Gong, Q., et al.: Prognostic prediction of therapeutic response in depression using high-field MR imaging. Neuroimage. 55, 1497–1503 (2011)

    Article  Google Scholar 

  31. Ecker, C., et al.: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49, 44–56 (2010)

    Article  Google Scholar 

  32. Logue, M.W., et al.: Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol. Psychiatry 83, 244–253 (2018). https://doi.org/10.1016/j.biopsych.2017.09.006

    Article  Google Scholar 

  33. Wshah, S., Skalka, C., Price, M.: Predicting posttraumatic stress disorder risk: a machine learning approach. JMIR Ment. Health. 6, e13946 (2019). https://doi.org/10.2196/13946

    Article  Google Scholar 

  34. Calhoun, V.D., Sui, J.: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 1, 230–244 (2016). https://doi.org/10.1016/j.bpsc.2015.12.005

    Article  Google Scholar 

  35. Uludağ, K., Roebroeck, A.: General overview on the merits of multimodal neuroimaging data fusion. NeuroImage. 102, 3–10 (2014). https://doi.org/10.1016/j.neuroimage.2014.05.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Brian O’Leary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

O’Leary, B. et al. (2020). Classification of PTSD and Non-PTSD Using Cortical Structural Measures in Machine Learning Analyses—Preliminary Study of ENIGMA-Psychiatric Genomics Consortium PTSD Workgroup. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics