Skip to main content

Precise Estimation of Resting State Functional Connectivity Using Empirical Mode Decomposition

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

The estimation of functional connectivity from the observed Blood Oxygen Level-Dependent (BOLD) signal may not be accurate because it is an indirect measure of neuronal activity or the existing deconvolution approaches assume that hemodynamic response function (HRF), which modulates the neuronal activities, is uniform across the brain regions or across the time course. We propose a novel approach using empirical mode decomposition (EMD), to reduce the effect of HRF from estimated neuronal activity signal (NAS) obtained after blind deconvolution for a BOLD time course. The first two intrinsic mode functions (IMFs), obtained during EMD of the neuronal activity signal represent its highest oscillating modes and hence have characteristic of impulses. The sum of the first two IMFs is computed as a refined representation of neuronal activity signal to estimate resting state connectome using the framework of dictionary learning. Usefulness of the proposed method has been demonstrated using two resting state datasets (healthy control and attention deficit hyperactivity disorder) taken from ‘1000 Functional Connectomes’. For quantitative analysis, Jaccard distances are computed between spatial maps obtained using BOLD signals and refined activity signals. Results show that maps obtained using NAS are a subset of that obtained using BOLD signal and hence avoid false acceptance of active voxels, which illustrates the importance of refined NAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.orgfcpClassicFcpTable.html.

  2. 2.

    http://fcon_1000.projects.nitrc.org/indi/adhd200/.

  3. 3.

    http://www.fil.ion.ucl.ac.uk/spm/.

  4. 4.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes.

References

  1. Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B Biol. Sci. 360(1457), 1001–1013 (2005)

    Article  Google Scholar 

  2. Bijsterbosch, J., Smith, S.M., Beckmann, C.F.: Introduction to Resting State fMRI Functional Connectivity. Oxford University Press, Oxford (2017)

    Google Scholar 

  3. Bush, K., Cisler, J.: Decoding neural events from fMRI BOLD signal: a comparison of existing approaches and development of a new algorithm. Magn. Reson. Imaging 31(6), 976–989 (2013)

    Article  Google Scholar 

  4. Cordes, D., et al.: Advances in functional magnetic resonance imaging data analysis methods using empirical mode decomposition to investigate temporal changes in early Parkinson’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 4, 372–386 (2018)

    Article  Google Scholar 

  5. Dash, D., Abrol, V., Sao, A.K., Biswal, B.: The model order limit: deep sparse factorization for resting brain. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 1244–1247. IEEE (2018)

    Google Scholar 

  6. Dash, D., Biswal, B., Sao, A.K., Wang, J.: Automatic recognition of resting state fMRI networks with dictionary learning. In: Wang, S., et al. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 249–259. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_24

    Chapter  Google Scholar 

  7. Deshpande, G., Sathian, K., Hu, X.: Effect of hemodynamic variability on granger causality analysis of fMRI. Neuroimage 52(3), 884–896 (2010)

    Article  Google Scholar 

  8. Glover, G.H.: Deconvolution of impulse response in event-related bold fMRI. Neuroimage 9(4), 416–429 (1999)

    Article  Google Scholar 

  9. Handwerker, D.A., Ollinger, J.M., D’Esposito, M.: Variation of bold hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21(4), 1639–1651 (2004)

    Article  Google Scholar 

  10. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  11. Iqbal, A., Seghouane, A.K.: Dictionary learning algorithm for multi-subject fMRI analysis via temporal and spatial concatenation. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2751–2755. IEEE (2018)

    Google Scholar 

  12. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytol. 11(2), 37–50 (1912)

    Article  Google Scholar 

  13. Karahanoğlu, F.I., Caballero-Gaudes, C., Lazeyras, F., Van De Ville, D.: Total activation: fMRI deconvolution through spatio-temporal regularization. Neuroimage 73, 121–134 (2013)

    Article  Google Scholar 

  14. Mensch, A., Varoquaux, G., Thirion, B.: Compressed online dictionary learning for fast resting-state fMRI decomposition. In: Proceedings of 13th International Symposium on Biomedical Imaging (ISBI), pp. 1282–1285. IEEE (2016)

    Google Scholar 

  15. Moradi, N., Dousty, M., Sotero, R.C.: Spatiotemporal empirical mode decomposition of resting-state fMRI signals: application to global signal regression. Front. Neurosci. 13 (2019)

    Google Scholar 

  16. Seghouane, A.K., Johnston, L.A.: Consistent hemodynamic response estimation function in fMRI using sparse prior information. In: IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 596–599. IEEE (2014)

    Google Scholar 

  17. Sreenivasan, K.R., Havlicek, M., Deshpande, G.: Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering. IEEE Trans. Med. Imaging 34(5), 1155–1163 (2014)

    Article  Google Scholar 

  18. Wu, G.R., Liao, W., Stramaglia, S., Ding, J.R., Chen, H., Marinazzo, D.: A blind deconvolution approach to recover effective connectivity brain networks from resting state fmri data. Med. Image Anal. 17(3), 365–374 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukesh Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Sao, A.K., Biswal, B. (2020). Precise Estimation of Resting State Functional Connectivity Using Empirical Mode Decomposition. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics