Skip to main content

Multimodal Prediction of Breast Cancer Relapse Prior to Neoadjuvant Chemotherapy Treatment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12329))

Abstract

Neoadjuvant chemotherapy (NAC) is one of the treatment options for women diagnosed with breast cancer, in which chemotherapy is administered prior to surgery. In current clinical practice, it is not possible to predict whether the patient is likely to encounter a relapse after treatment and have the breast cancer reoccur in the same place. If this outcome could be predicted prior to the start of NAC, it could inform therapeutic options. We explore the use of multimodal imaging and clinical features to predict the risk of relapse following NAC treatment. We performed a retrospective study on a cohort of 1738 patients who were administered with NAC. Of these patients, 567 patients also had magnetic resonance imaging (MRI) taken before the treatment started. We analyzed the data using deep learning and traditional machine learning algorithms to increase the set of discriminating features and create effective models. Our results demonstrate the ability to predict relapse prior to NAC treatment initiation, using each modality alone. We then show the possible improvement achieved by combining MRI and clinical data, as measured by the AUC, sensitivity, and specificity. When evaluated on holdout data, the overall combined model achieved 0.735 AUC and 0.438 specificity at a sensitivity operation point of 0.95. This means that almost every patient encountering relapse will also be correctly classified by our model, enabling the reassessment of this treatment prior to its start. Additionally, the same model was able to correctly predict in advance 44% of the patients that would not encounter relapse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Teshome, M., Hunt, K.K.: Neoadjuvant therapy in the treatment of breast cancer. Surg. Oncol. Clin. N. Am. 23(3), 505–523 (2014)

    Article  Google Scholar 

  2. Abreu, P.H., et al.: Predicting breast cancer recurrence using machine learning techniques: a systematic review. ACM Comput. Surv. (CSUR) 49(3), 1–40 (2016)

    Article  Google Scholar 

  3. Goyal, K., Aggarwal, P., Kumar, M.: Prediction of breast cancer recurrence: a machine learning approach. In: Behera, H.S., Nayak, J., Naik, B., Pelusi, D. (eds.) Computational Intelligence in Data Mining. AISC, vol. 990, pp. 101–113. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8676-3_10

    Chapter  Google Scholar 

  4. Chen, X., et al.: A reliable multi-classifier multi-objective model for predicting recurrence in triple negative breast cancer. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2019).‏

    Google Scholar 

  5. Al-Quraishi, T., Abawajy, J.H., Chowdhury, M.U., Rajasegarar, S., Abdalrada, A.S.: Breast cancer recurrence prediction using random forest model. In: Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H. (eds.) SCDM 2018. AISC, vol. 700, pp. 318–329. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72550-5_31

    Chapter  Google Scholar 

  6. Tseng, Y.-J., et al.: Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. Int. J. Med. Inf. 128, 79–86 (2019)

    Article  Google Scholar 

  7. Hylton, N.M., et al.: Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence-free survival—results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology 279(1), 44–55 (2016)

    Article  Google Scholar 

  8. Drukker, K., et al.: Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival “early on” in neoadjuvant treatment of breast cancer. Cancer Imaging 18(1), 12 (2018). https://doi.org/10.1186/s40644-018-0145-9

    Article  MathSciNet  Google Scholar 

  9. Drukker, K., et al.: Deep learning predicts breast cancer recurrence in analysis of consecutive MRIs acquired during the course of neoadjuvant chemotherapy. In: Medical Imaging 2020: Computer-Aided Diagnosis, vol. 11314. International Society for Optics and Photonics (2020).‏

    Google Scholar 

  10. ISPY1. https://wiki.cancerimagingarchive.net/display/Public/ISPY1

  11. Li, H., et al.: MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology 281(2), 382–391 (2016)

    Article  Google Scholar 

  12. Lee, H., et al.: Predicting response to neoadjuvant chemotherapy in patients with breast cancer: combined statistical modeling using clinicopathological factors and FDG PET/CT texture parameters. Clin. Nucl. Med. 44(1), 21–29 (2019)

    Article  Google Scholar 

  13. Rabinovici-Cohen, S., et al.: Radiomics for predicting response to neoadjuvant chemotherapy treatment in breast cancer. In: Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, vol. 11318. International Society for Optics and Photonics (2020)

    Google Scholar 

  14. Eben, J.E., Braman, N., Madabhushi, A.: Response estimation through spatially oriented neural network and texture ensemble (RESONATE). In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 602–610. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_66

    Chapter  Google Scholar 

  15. Haarburger, C., et al.: Multi scale curriculum cnn for context-aware breast MRI malignancy classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 495–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_54

    Chapter  Google Scholar 

  16. Ravichandran, K., et al.: A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575. International Society for Optics and Photonics (2018).‏

    Google Scholar 

  17. Ha, R., et al.: Prior to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach using a breast MRI tumor dataset. J. Digit. Imaging 32(5), 693–701 (2018). https://doi.org/10.1007/s10278-018-0144-1

    Article  Google Scholar 

  18. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)‏

    Google Scholar 

  19. TensorFlow. https://www.tensorflow.org. Accessed 5 July 2020

  20. Klein, J., et al.: Locally advanced breast cancer treated with neoadjuvant chemotherapy and adjuvant radiotherapy: a retrospective cohort analysis. BMC Cancer 19, 306 (2019). https://doi.org/10.1186/s12885-019-5499-2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Fabien Reyal and Dr. Beatriz Grandal Rejo of Institut Curie for defining the clinical use case. We thank Chani Sacharen from IBM Research - Haifa for her help in editing the manuscript.

Research reported in this publication was partially supported by European Union’s Horizon 2020 research and innovation program under grant agreement No 780495. The authors are solely responsible for the content of this paper. It does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of data appearing therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Rabinovici-Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabinovici-Cohen, S., Abutbul, A., Fernández, X.M., Hijano Cubelos, O., Perek, S., Tlusty, T. (2020). Multimodal Prediction of Breast Cancer Relapse Prior to Neoadjuvant Chemotherapy Treatment. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.d.C. (eds) Predictive Intelligence in Medicine. PRIME 2020. Lecture Notes in Computer Science(), vol 12329. Springer, Cham. https://doi.org/10.1007/978-3-030-59354-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59354-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59353-7

  • Online ISBN: 978-3-030-59354-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics