Skip to main content

Cross-Lingual Transfer Learning for Medical Named Entity Recognition

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

Abstract

Extensive technologies have been employed to explore a best way for cross-lingual transfer learning. In medical domain, Named Entity Recognition is pivotal for many downstream tasks, such as medical entity linking and clinical decision support systems. Nevertheless, the lack of annotation limits the applicability in many languages without enough labeled data. To alleviate this issue and make use of languages with sufficient annotated data, we find a new way to obtain medical parallel corpus from medical terminology systems and knowledge bases and propose a methodology which combines cross-lingual language model pretraining and bilingual word embedding alignment with the help of the parallel corpus. Moreover, our combined architecture which maintains the framework of pretrained model can not only be used for NER task but also other downstream NLP tasks. Experiments demonstrated that incorporating Chinese and English medical data can effectively improve the performance for an English medical NER dataset (i2b2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.statmt.org/moses/.

  2. 2.

    http://www.statmt.org/moses/?n=FactoredTraining.AlignWords/.

  3. 3.

    https://github.com/attardi/wikiextractor.

References

  1. Artetxe, M., Labaka, G., Agirre, E.: Learning principled bilingual mappings of word embeddings while preserving monolingual invariance, pp. 2289–2294 (2016)

    Google Scholar 

  2. Artetxe, M., Labaka, G., Agirre, E.: Learning bilingual word embeddings with (almost) no bilingual data, vol. 1, pp. 451–462 (2017)

    Google Scholar 

  3. Artetxe, M., Schwenk, H.: Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond (2018). arXiv Computation and Language

    Google Scholar 

  4. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data (2017). arXiv Computation and Language

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

  6. Doan, S., Bastarache, L., Klimkowski, S., Denny, J.C., Xu, H.: Integrating existing natural language processing tools for medication extraction from discharge summaries. J. Am. Med. Inf. Assoc. 17(5), 528–531 (2010)

    Article  Google Scholar 

  7. Ehrmann, M., Turchi, M., Steinberger, R.: Building a multilingual named entity-annotated corpus using annotation projection, pp. 118–124 (2011)

    Google Scholar 

  8. Faruqui, M., Dyer, C.: Improving vector space word representations using multilingual correlation, pp. 462–471 (2014)

    Google Scholar 

  9. Friedman, C., Alderson, P.O., Austin, J.H.M., Cimino, J.J., Johnson, S.B.: A general natural-language text processor for clinical radiology. J. Am. Med. Inf. Assoc. 1(2), 161–174 (1994)

    Article  Google Scholar 

  10. Gridach, M.: Character-level neural network for biomedical named entity recognition. J. Biomed. Inf. 70, 85–91 (2017)

    Article  Google Scholar 

  11. Habibi, M., Weber, L., Neves, M.L., Wiegandt, D.L., Leser, U.: Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics 33(14), i37–i48 (2017)

    Article  Google Scholar 

  12. Haug, P.J., Christensen, L.M., Gundersen, M.L., Clemons, B., Koehler, S.B., Bauer, K.: A natural language parsing system for encoding admitting diagnoses, pp. 814–818 (1997)

    Google Scholar 

  13. Haug, P.J., Koehler, S., Lau, L.M., Wang, P., Rocha, R.A., Huff, S.M.: Experience with a mixed semantic/syntactic parser, pp. 284–288 (1995)

    Google Scholar 

  14. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification, vol. 1, pp. 328–339 (2018)

    Google Scholar 

  15. Johnson, A.E.W., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data 3(1), 160035 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition, pp. 260–270 (2016)

    Google Scholar 

  17. Lample, G., Conneau, A.: Cross-lingual language model pretraining (2019). arXiv preprint arXiv:1901.07291

  18. Lample, G., Conneau, A., Ranzato, M., Denoyer, L., Jegou, H.: Word translation without parallel data (2018)

    Google Scholar 

  19. Li, Z., Liu, F., Antieau, L.D., Cao, Y., Yu, H.: Lancet: a high precision medication event extraction system for clinical text. J. Am. Med. Inf. Assoc. 17(5), 563–567 (2010)

    Article  Google Scholar 

  20. Meystre, S.M., Thibault, J., Shen, S., Hurdle, J.F., South, B.R.: Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. J. Am. Med. Inf. Assoc. 17(5), 559–562 (2010)

    Article  Google Scholar 

  21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013)

    Google Scholar 

  22. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation (2013). arXiv Computation and Language

    Google Scholar 

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality, pp. 3111–3119 (2013)

    Google Scholar 

  24. Ni, J., Dinu, G., Florian, R.: Weakly supervised cross-lingual named entity recognition via effective annotation and representation projection, vol. 1, pp. 1470–1480 (2017)

    Google Scholar 

  25. Patrick, J., Li, M.: High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J. Am. Med. Inf. Assoc. 17(5), 524–527 (2010)

    Article  Google Scholar 

  26. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation, pp. 1532–1543 (2014)

    Google Scholar 

  27. Peters, M.E., et al.: Deep contextualized word representations (2018). arXiv Computation and Language

    Google Scholar 

  28. Savova, G., et al.: Mayo clinical text analysis and knowledge extraction system (ctakes): architecture, component evaluation and applications. J. Am. Med. Inf. Assoc. 17(5), 507–513 (2010)

    Article  Google Scholar 

  29. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units (2015). arXiv Computation and Language

    Google Scholar 

  30. Smith, S.L., Turban, D.H.P., Hamblin, S., Hammerla, N.Y.: Offline bilingual word vectors, orthogonal transformations and the inverted softmax (2017). arXiv Computation and Language

    Google Scholar 

  31. Spasic, I., Sarafraz, F., Keane, J.A., Nenadic, G.: Medication information extraction with linguistic pattern matching and semantic rules. J. Am. Med. Inf. Assoc. 17(5), 532–535 (2010)

    Article  Google Scholar 

  32. Taylor, W.L.: “cloze procedure": A new tool for measuring readability. Journalism Bull. 30(30), 415–433 (1953)

    Article  Google Scholar 

  33. Tsai, C., Roth, D.: Cross-lingual wikification using multilingual embeddings, pp. 589–598 (2016)

    Google Scholar 

  34. Wang, Q., Xia, Y., Zhou, Y., Ruan, T., Gao, D., He, P.: Incorporating dictionaries into deep neural networks for the chinese clinical named entity recognition (2018). arXiv Computation and Language

    Google Scholar 

  35. Xu, K., Zhou, Z., Gong, T., Hao, T., Liu, W.: Sblc: a hybrid model for disease named entity recognition based on semantic bidirectional lstms and conditional random fields. BMC Med. Inf. Decis. Making 18(5), 114 (2018)

    Article  Google Scholar 

  36. Yarowsky, D., Ngai, G., Wicentowski, R.: Inducing multilingual text analysis tools via robust projection across aligned corpora, pp. 1–8 (2001)

    Google Scholar 

  37. Zeng, Q.T., Goryachev, S., Weiss, S.T., Sordo, M., Murphy, S.N., Lazarus, R.: Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med. Inf. Decis. Making 6(1), 30–30 (2006)

    Article  Google Scholar 

  38. Zhang, M., Liu, Y., Luan, H., Sun, M.: Adversarial training for unsupervised bilingual lexicon induction, vol. 1, pp. 1959–1970 (2017)

    Google Scholar 

  39. Zitouni, I., Florian, R.: Mention detection crossing the language barrier, pp. 600–609 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, P. et al. (2020). Cross-Lingual Transfer Learning for Medical Named Entity Recognition. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_28

Download citation

Publish with us

Policies and ethics