Skip to main content

Dynamical User Intention Prediction via Multi-modal Learning

  • Conference paper
  • First Online:
Book cover Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

  • 2715 Accesses

Abstract

Predicting the intention of users for different commodities has been receiving more and more attention in many applications, such as the decision of awarding bonus and the recommendation of commodity in E-commerce. Existing methods treat customer-to-commodity data as a flat data sequence while ignoring intrinsic multi-modality nature. Observing that different modalities (e.g., click ratios, collection, and purchase amount), as well as the elements within each modality, contribute differently to the prediction of purchasing intention. Besides, existing methods cannot handle the sparsity problem well. As a result, they cannot predict the user intention with sparse data. To address these issues, in this paper, we present a novel Dynamical User Intention Prediction via Multi-modal Learning (DUIPML) method to integrate different types of data to dynamically predict the user intention while reducing the impact of sparse data, which can be well applied on the practical bonus awarding scenario. Specifically, we firstly design a multi-modal fusion strategy to integrate different types of behavior information to obtain the initial user intention of each customer for each category. Next, we treat different clients with different preferences as two modalities and proposed a multi-modal alignment strategy to explore the latent correlations between different clients. After that, we communicate knowledge between the two clients based on the correlations to complete and enrich the user intention for each other, and thus to alleviate the issue of data sparsity. We apply the enriched user intention for the practical bonus awarding scenario on the Taobao platform in Alibaba group. Experiments on benchmark multi-modal datasets and the realistic E-commodity scenarios show that our method significantly outperforms related representative approaches both on effectiveness and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

  2. 2.

    https://www.wikidata.org/wiki/Wikidata.

  3. 3.

    http://press.liacs.nl/mirflickr/mirdownload.html.

References

  1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Dis. 29(3), 626–688 (2014). https://doi.org/10.1007/s10618-014-0365-y

    Article  MathSciNet  Google Scholar 

  2. Baltruaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. TPAMI 41(2), 423–443 (2019)

    Article  Google Scholar 

  3. Bronstein, M.M., Bronstein, A.M., Michel, F., Paragios, N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: CVPR, pp. 3594–3601 (2010)

    Google Scholar 

  4. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: ICASSP, pp. 6645–6649 (2013)

    Google Scholar 

  5. Guo, Q., et al.: Securing the deep fraud detector in large-scale e-commerce platform via adversarial machine learning approach. In: The World Wide Web Conference, pp. 616–626 (2019)

    Google Scholar 

  6. Guo, Y., Ding, G., Han, J., Gao, Y.: Sitnet: discrete similarity transfer network for zero-shot hashing. In: IJCAI, pp. 1767–1773 (2017)

    Google Scholar 

  7. Hooi, B., et al.: Fraudar: bounding graph fraud in the face of camouflage. In: KDD, pp. 895–904 (2016)

    Google Scholar 

  8. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)

    Article  Google Scholar 

  9. Hu, Z., Zhang, J., Li, Z.: General robustness evaluation of incentive mechanism against bounded rationality using continuum-armed bandits. AAAI 33, 6070–6078 (2019)

    Article  Google Scholar 

  10. Jiang, Q.Y., Li, W.J.: Deep cross-modal hashing. In: CVPR, pp. 3270–3278 (2017)

    Google Scholar 

  11. Kumar, S., Udupa, R.: Learning hash functions for cross-view similarity search. In: IJCAI, pp. 1360–1365 (2011)

    Google Scholar 

  12. Lei, C., Ji, S., Li, Z.: Tissa: a time slice self-attention approach for modeling sequential user behaviors. In: The World Wide Web Conference, pp. 2964–2970 (2019)

    Google Scholar 

  13. Li, Z., et al.: Fair: fraud aware impression regulation system in large-scale real-time e-commerce search platform. In: ICDE, pp. 1898–1903 (2019)

    Google Scholar 

  14. Lin, Z., Ding, G., Han, J., Wang, J.: Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Trans. on Cybern. 47(12), 4342–4355 (2017)

    Article  Google Scholar 

  15. Lin, Z., Ding, G., Hu, M., Wang, J.: Semantics-preserving hashing for cross-view retrieval. In: CVPR, pp. 3864–3872 (2015)

    Google Scholar 

  16. Liu, X., Yu, G., Domeniconi, C., Wang, J., Ren, Y., Guo, M.: Ranking-based deep cross-modal hashing. In: AAAI, pp. 4400–4407 (2019)

    Google Scholar 

  17. Liu, X., Yu, G., Domeniconi, C., Wang, J., Xiao, G., Guo, M.: Weakly-supervised cross-modal hashing. IEEE Trans. on Big Data 6(99), 1–12 (2019)

    Article  Google Scholar 

  18. Long, M., Yue, C., Wang, J., Yu, P.S.: Composite correlation quantization for efficient multimodal retrieval. In: SIGIR, pp. 579–588 (2016)

    Google Scholar 

  19. Ranjan, V., Rasiwasia, N., Jawahar, C.V.: Multi-label cross-modal retrieval. In: ICCV, pp. 4094–4102 (2015)

    Google Scholar 

  20. Shao, W., He, L., Lu, C.T., Wei, X., Philip, S.Y.: Online unsupervised multi-view feature selection. In: ICDM, pp. 1203–1208 (2016)

    Google Scholar 

  21. Shen, F., Zhou, X., Yu, J., Yang, Y., Liu, L., Shen, H.T.: Scalable zero-shot learning via binary visual-semantic embeddings. TIP 99(1), 1–10 (2019)

    MATH  Google Scholar 

  22. Shi, X., Yu, P.: Dimensionality reduction on heterogeneous feature space. In: ICDM, pp. 635–644 (2012)

    Google Scholar 

  23. Thompson, D.J.: A theory of sampling finite universes with arbitrary probabilities (1952)

    Google Scholar 

  24. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. TPAMI 34(12), 2393–2406 (2012)

    Article  Google Scholar 

  25. Wang, J., Zhang, T., Sebe, N., Shen, H.T.: A survey on learning to hash. TPAMI 40(4), 769–790 (2018)

    Article  Google Scholar 

  26. Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data - a survey. Proc. IEEE 104(1), 34–57 (2016)

    Article  Google Scholar 

  27. Wang, K., He, R., Wang, W., Wang, L., Tan, T.: Learning coupled feature spaces for cross-modal matching. In: ICCV, pp. 2088–2095 (2013)

    Google Scholar 

  28. Weng, H., et al.: Cats: cross-platform e-commerce fraud detection. In: ICDE, pp. 1874–1885 (2019)

    Google Scholar 

  29. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  30. Xu, Y., Yang, Y., Shen, F., Xu, X., Zhou, Y., Shen, H.T.: Attribute hashing for zero-shot image retrieval. In: ICME, pp. 133–138 (2017)

    Google Scholar 

  31. Yang, Y., Luo, Y., Chen, W., Shen, F., Jie, S., Shen, H.T.: Zero-shot hashing via transferring supervised knowledge. In: ACM MM, pp. 1286–1295 (2016)

    Google Scholar 

  32. Yu, J., Wang, M., Tao, D.: Semisupervised multiview distance metric learning for cartoon synthesis. TIP 21(11), 4636–4648 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, D., Li, W.J.: Large-scale supervised multimodal hashing with semantic correlation maximization. In: AAAI, pp. 2177–2183 (2014)

    Google Scholar 

  34. Zhang, Y., Ahmed, A., Josifovski, V., Smola, A.: Taxonomy discovery for personalized recommendation. In: WSDM, pp. 243–252 (2014)

    Google Scholar 

  35. Zhou, J., Ding, G., Guo, Y.: Latent semantic sparse hashing for cross-modal similarity search. In: ACM SIGIR, pp. 415–424 (2014)

    Google Scholar 

  36. Ziegler, C.N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of product recommendations. In: CIKM, pp. 406–415 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2020). Dynamical User Intention Prediction via Multi-modal Learning. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_35

Download citation

Publish with us

Policies and ethics