Skip to main content

Optimal Trade Execution Based on Deep Deterministic Policy Gradient

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

Abstract

In this paper, we address the Optimal Trade Execution (OTE) problem over the limit order book mechanism, which is about how best to trade a given block of shares at minimal cost or for maximal return. To this end, we propose a deep reinforcement learning based solution. Though reinforcement learning has been applied to the OTE problem, this paper is the first work that explores deep reinforcement learning and achieves state of the art performance. Concretely, we develop a deep deterministic policy gradient framework that can effectively exploit comprehensive features of multiple periods of the real and volatile market. Experiments on three real market datasets show that the proposed approach significantly outperforms the existing methods, including the Submit & Leave (SL) policy (as baseline), the Q-learning algorithm, and the latest hybrid method that combines the Almgren-Chriss model and reinforcement learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbarzadeh, N., Tekin, C., van der Schaar, M.: Online learning in limit order book trade execution. IEEE Trans. Signal Process. 66(17), 4626–4641 (2018). https://doi.org/10.1109/TSP.2018.2858188

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–40 (2001)

    Article  Google Scholar 

  3. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst. 13(4), 341–379 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D., Lo, A.: Optimal control of execution costs - a study of government bonds with the same maturity date. J. Financ. Mark. 1, 1–50 (1998)

    Article  Google Scholar 

  5. Cont, R., Larrard, A.D.: Price dynamics in a Markovian limit order market. SIAM J. Financ. Math. 4(1), 1–25 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cont, R., Stoikov, S., Talreja, R.: A stochastic model for order book dynamics. Oper. Res. 58(3), 549–563 (2010)

    Article  MathSciNet  Google Scholar 

  7. Feng, Y., Palomar, D.P., Rubio, F.: Robust optimization of order execution. IEEE Trans. Signal Process. 63(4), 907–920 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hendricks, D., Wilcox, D.: A reinforcement learning extension to the Almgren-Chriss framework for optimal trade execution. In: 2104 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), pp. 457–464. IEEE (2014)

    Google Scholar 

  9. Huang, W., Lehalle, C.A., Rosenbaum, M.: Simulating and analyzing order book data: the queue-reactive model. J. Am. Stat. Assoc. 110(509), 107–122 (2015)

    Article  MathSciNet  Google Scholar 

  10. Jiang, Z., Xu, D., Liang, J.: A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:1706.10059 (2017)

  11. Johnson, J.D., Li, J., Chen, Z.: Reinforcement learning: an introduction-RS Sutton, AG Barto, MIT Press, Cambridge, MA 1998, 322 pp. ISBN 0-262-19398-1. Neurocomputing 35(1), 205–206 (2000)

    Google Scholar 

  12. Kearns, M., Nevmyvaka, Y.: Machine learning for market microstructure and high frequency trading. High Frequency Trading: New Realities for Traders, Markets, and Regulators (2013)

    Google Scholar 

  13. Liang, Z., Jiang, K., Chen, H., Zhu, J., Li, Y.: Deep reinforcement learning in portfolio management. arXiv preprint arXiv:1808.09940 (2018)

  14. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  15. Nevmyvaka, Y., Feng, Y., Kearns, M.: Reinforcement learning for optimized trade execution. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 673–680. ACM (2006)

    Google Scholar 

  16. Palguna, D., Pollak, I.: Non-parametric prediction in a limit order book. In: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), p. 1139. IEEE (2013)

    Google Scholar 

  17. Palguna, D., Pollak, I.: Mid-price prediction in a limit order book. IEEE J. Sel. Topics Signal Process. 10(6), 1 (2016)

    Article  Google Scholar 

  18. Perold, A.F.: The implementation shortfall. J. Portfolio Manag. 33(1), 25–30 (1988)

    Google Scholar 

  19. Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., De Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10(6), 1053–1060 (2016)

    Article  Google Scholar 

  20. Sherstov, A.A., Stone, P.: Three automated stock-trading agents: a comparative study. In: Faratin, P., Rodríguez-Aguilar, J.A. (eds.) AMEC 2004. LNCS (LNAI), vol. 3435, pp. 173–187. Springer, Heidelberg (2006). https://doi.org/10.1007/11575726_13

    Chapter  Google Scholar 

  21. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, ICML 2014, vol. 32, pp. I-387–I-395. JMLR.org (2014)

    Google Scholar 

  22. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, pp. 1057–1063 (2000)

    Google Scholar 

  23. Xiong, Z., Liu, X.Y., Zhong, S., Walid, A., et al.: Practical deep reinforcement learning approach for stock trading. In: NeurIPS Workshop on Challenges and Opportunities for AI in Financial Services: The Impact of Fairness, Explainability, Accuracy, and Privacy (2018)

    Google Scholar 

  24. Ye, Z., Huang, K., Zhou, S., Guan, J.: Gaussian weighting reversion strategy for accurate on-line portfolio selection. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 929–936 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by Science and Technology Commission of Shanghai Municipality Project (#19511120700). Jihong Guan was partially supported by the Program of Science and Technology Innovation Action of Science and Technology Commission of Shanghai Municipality under Grant No. 17511105204 and the Special Fund for Shanghai Industrial Transformation and Upgrading under grant No. 18XI-05, Shanghai Municipal Commission of Economy and Informatization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuigeng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Deng, W., Zhou, S., Xu, Y., Guan, J. (2020). Optimal Trade Execution Based on Deep Deterministic Policy Gradient. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_42

Download citation

Publish with us

Policies and ethics