
ar
X

iv
:2

00
6.

11
49

4v
2

 [
cs

.D
B

]
 2

5
Ju

n
20

20

AOT: Pushing the Efficiency Boundary of

Main-memory Triangle Listing

Michael Yu1, Lu Qin2, Ying Zhang2, Wenjie Zhang1, and Xuemin Lin1

1 University of New South Wales {mryu,wenjie.zhang,lxue}@cse.unsw.edu.au
2 University of Technology Sydney {lu.qin,ying.zhang}@uts.edu.au

Abstract. Triangle listing is an important topic significant in many
practical applications. Efficient algorithms exist for the task of triangle
listing. Recent algorithms leverage an orientation framework, which can
be thought of as mapping an undirected graph to a directed acylic graph,
namely oriented graph, with respect to any global vertex order. In this
paper, we propose an adaptive orientation technique that satisfies the
orientation technique but refines it by traversing carefully based on the
out-degree of the vertices in the oriented graph during the computation of
triangles. Based on this adaptive orientation technique, we design a new
algorithm, namely AOT, to enhance the edge-iterator listing paradigm.
We also make improvements to the performance of AOT by exploiting
the local order within the adjacent list of the vertices.
We show that AOT is the first work which can achieve best performance
in terms of both practical performance and theoretical time complexity.
Our comprehensive experiments over 16 real-life large graphs show a su-
perior performance of our AOT algorithm when compared against the
state-of-the-art, especially for massive graphs with billions of edges. The-
oretically, we show that our proposed algorithm has a time complexity of
Θ(

∑
〈u,v〉∈E

min{deg+(u), deg+(v)})), where E and deg+(x) denote the
set of directed edges in an oriented graph and the out-degree of vertex x

respectively. As to our best knowledge, this is the best time complexity
among in-memory triangle listing algorithms.

Keywords: Triangle · Enumeration · Graph algorithm

1 Introduction

Triangle-listing is one of the most fundamental problems in graphs, with nu-
merous applications including structural clustering [25], web spamming discov-
ery [4], community search [5,18], higher-order graph clustering [26], and role
discovery [6]. A large number of algorithms have been proposed to efficiently
enumerate all triangles in a given graph. These include in-memory algorithms
[20,19,15,27], I/O efficient algorithms [7,8,11,12], and parallel/distributed algo-
rithms [21,10,16], etc. In this paper, we focus on in-memory triangle-listing al-
gorithms and aim to achieve the best performance from both theoretical and
practical aspects.

State-of-the-art. The existing state-of-the-art in-memory triangle-listing algo-
rithms are based on vertex ordering and orientation techniques [15,9]. Given an

http://arxiv.org/abs/2006.11494v2

undirected simple graph, these algorithms first compute a total-order η for all its
graph vertices; one example of such ordering is the non-increasing degree order.
With the total-order η, a direction can then be specified for each undirected
edge (u, v) such that η(u) < η(v). Once complete, the graph orientation tech-
nique converts the initial undirected graph G into a directed acyclic graph G.
With an oriented graph, the original problem of triangle-listing on an undirected
simple graph G is recast to a problem of finding three vertices u, v, w so that
directed edges 〈u, v〉, 〈v, w〉, 〈u,w〉 exist in G. For directed triangle instances,
we refer to the role of vertex u with 2 out-going edges that form a triangle as a
pivot.

Motivation. We give an example for finding triangles in an oriented-graph
[9]. For each pivot vertex u, the method first initializes an index to the out-
neighbors of u; after that, for each out-neighbor v of u, it traverses the out-
neighbor w of v and checks to see whether w is also an out-neighbor of v in the
index. The advantage of this technique is twofold: First, by simply processing all
pivot vertices using the above procedure, it already guarantees that each triangle
is generated only once without performing the normal pruning for duplicate
triangle solutions. Secondly, parallelization of the algorithm is easy if we process
sets of pivot vertices independently. This algorithm has the time complexity of
Θ(Σv∈V deg

+(v) · deg−(v)) and is bounded by O(m1.5) [9], where V is the set
of vertices in G; deg+(v) and deg−(v) are the numbers of out-neighbors and
in-neighbors of v in G respectively; and m is the number of edges in G.

A dominant cost of the above algorithm is that of look-up operations, where
the algorithm searches the out-neighbors of each pivot. A natural question is
raised: Is it possible to significantly reduce the number of look-up operations
needed by the algorithm? To answer this question, we first find the time com-
plexity of the former algorithm is equivalent to that of Θ(Σ〈u,v〉∈Edeg+(v)),
where E is the set of directed edges in G. In other words, for each directed
edge 〈u, v〉 ∈ E, the algorithm will always spend deg+(v) amount of look-up
operations irrespective of whether deg+(v) ≤ deg+(u) holds. We find that if we
are able to spend deg+(u) operations in the case that deg+(v) > deg+(u) for
the edge 〈u, v〉 ∈ E, the cost of the algorithm can be further lessened, there-
fore it motivates us to explore new ways to further leverage the properties from
graph orientation at a finer level, to improve the algorithm both theoretically
and practically.

Challenges. Faced with the above problem, we ask intuitively: Can we tackle
the asymmetry by manually reversing the direction of each edge 〈u, v〉 ∈ E if
deg+(v) > deg+(u) and then reuse the same algorithm on the now modified
oriented graph? Unfortunately, this solution is infeasible. To explain, reversing
the direction of the selected edges can result in cycles (〈u, v〉, 〈v, w〉, and 〈w, u〉) in
the oriented graph G, such cyclic triangles will be missed by the aforementioned
algorithm. To ensure algorithmic correctness, for each undirected edge (u, v),
up to two orientations need to be kept simultaneously: the original orientation
in G and the orientation specified by the comparison of deg+(u) and deg+(v)
because the two orientations can be inconsistent. Therefore, to make our idea
practically applicable, the following issues will be addressed in this paper: (1)
How can we integrate the two orientations to improve the algorithm complexity

Table 1. The Summary of Notations

Notation Definition

G = (V,E) an undirected graph with vertices V and edges E
G a directed graph with vertices V and directed edge E

u, v, w, x, y vertices in the graph
(u, v) an undirected edge between vertices u and v

〈u, v〉 a directed edge from vertex u to v

(u, v, w) a triangle with vertices u, v and w

deg(u) the degree of the vertex u

deg+(u) the out-degree of u in oriented graph

and also ensure that each triangle is enumerated once and only once? and (2)
Can we further improve the efficiency of the algorithm practically by exploring
some local vertex orders?

Contributions. In this paper, we answer the above questions and make the
following contributions.

(1) We have designed a new triangle listing algorithm named Adaptive Oriented
Triangle-Listing (AOT) by developing novel adaptive orientation and local or-
dering techniques, which can achieve the best time complexity among the exist-
ing algorithms in the literature.

(2) We conduct an extensive performance study using 16 real-world large graphs
at billion scale, to demonstrate the high efficiency of our proposed solutions. The
experimental results show that our AOT algorithm is faster than the state-of-
the-art solutions by up to an order of magnitude. It is also shown that AOT can
be easily extended to parallel setting, significantly outperforming the state-of-
the-art parallel solutions.

Organization. The rest of the paper is organized as follows. Section 2 provides
a problem definition and states the notations used and introduce two state-of-
the-art methods. Section 3 explains some motivation and explains our proposed
algorithm. Section 4 describes the experimental studies conducted and reports on
findings from the results. Section 5 presents the related work. Section 6 concludes
the paper.

2 Background

In this section, we formally introduce the problem and the state-of-the-art tech-
niques. Table 1 is a summary of the mathematical notations used in this paper.

2.1 Notations and Problem Definition

Let G = (V,E) be an undirected simple graph, where V and E are a set of
vertices and a set of edges, respectively. Below, we also use V(G) and E(G) to
denote V and E of a graph G. The number of vertices and the number of edges is
denoted as n and m for n = |V | and m = |E|, respectively. For undirected graph
G, we denote the set of neighbors of vertex u in G as N(u) and denote the degree
of u in G as deg(u) which is equal to |N(u)|. For a directed graph G = (V,E),
we use E to denote the set of directed edges {〈u, v〉} where u and v are the
starting and ending vertex respectively. We denote the set of outgoing-neighbors
of vertex u in G as N+(u), and the out-degree as deg+(u) = |N+(u)|. Likewise,

we denote the in-neighborhood of vertex u in G as N−(u), and the in-degree
as deg−(u) = |N−(u)|. By (u, v), we denote an undirected edge between two
vertices u and v. A triangle is a set of three vertices fully connected to each
other. We denote by (u, v, w) a triangle consisting of three vertices u, v and w.

Problem statement. Given an undirected simple graph G = (V,E), we aim
to develop an efficient main-memory algorithm to list all triangles in the graph
G one by one, with both good time complexity and practical performance.

2.2 Compact Forward (CF) Algorithm

We consider the method Compact-forward (CF) [15] as a state-of-the-art for tri-
angle listing; although it was designed in 2008, its efficiency for triangle listing
is still referred to frequently [9]. There are two key components in the CF algo-
rithm: the “edge-iterator” computing paradigm and the orientation technique.

Edge-iterator. The “edge-iterator” is a recurring computing paradigm for tri-
angle listing, its strategy for triangle listing is to find triangles with reference
to pairs of adjacent vertices. Given an edge (u, v), any triangle that includes
the edge must contain a third vertex w that has connections to both of u and
v. Thus, we can obtain any triangles containing edge (u, v) based on the inter-
section of N(u) and N(v). For each edge, the edge-iterator returns the set of
triangles associated with that edge, and when repeated on all edges, the set of
all triangle solutions is made available.

Orientation technique. An orientation technique is recently leveraged in tri-
angle listing algorithms, this involves the generation of a directed (i.e., oriented)
graph G from an initially undirected input graph G [15]. Each undirected edge
is mapped to a directed edge where the direction (i.e., orientation) is decided
by the rank of its endpoints in a vertex-ordering (e.g., out-degree [15]). We refer
to vertex u as a pivot vertex if u has two out-going edges. We can association a
triangle in the undirected graph with only one pivot vertex to ensure one and
only one instance of this triangle in the output, which significantly improves the
performance.

Algorithm 1: CF(G)

Input : G : an undirected graph
Output : All triangles in G

G← Orientation graph of G based on degree-order;1

for each vertex u ∈ G do2

for each out-going neighbor v do3

T ← N+(u) ∩N+(v) ;4

for each vertex w ∈ T do5

Output the triangle (u, v, w);6

Compact Forward (CF) Algorithm. The CF algorithm is designed based
on the edge-iterator and the orientation technique. We show its pseudocode in
Algorithm 1. In line 1, undirected graph G is transformed into a directed graph
G via the orientation technique. (Line 2 onward follows the edge-iterator frame-
work.) In Line 3, triangles are enumerated by iterating through the outgoing-

Algorithm 2: kClist(G)

Input : G : an undirected graph
Output : All triangles in G

G← Orientation graph of G based on degeneracy order η ;1

for each vertex u ∈ G do2

for any two out-going neighbors {v, w} of u with η(v) < η(w) do3

if there is a directed edge 〈v, w〉 ∈ E then4

Output triangle (u, v, w);5

neighborhoods rather than the full neighborhood. In Line 4, a merge-based in-
tersection identifies the common out-going neighbors of u and v, denoted by T .
A set of triangles (u, v, w) is then output for every vertex w ∈ T .

Analysis. Since all triangles identified are unique, a naive traversal of the ori-
ented graphs edges (the outgoing-neighborhoods for each vertex) yields the com-
plete set of unique solutions without explicit duplicate pruning. In terms of time
complexity, the merge-based intersection operation at Line 4 takes Θ(deg+(u)+
deg+(v)), assuming that the directed adjacency lists of u and v are sorted. In
total, the CF algorithm has a complexity of Θ(

∑
〈u,v〉∈E

deg+(u) + deg+(v)).

Remark 1. There is also an alternative implementation of the CF algorithm that
adopts hash tables for the intersection operation, namely CF-Hash. Suppose
a hash table has been built for each vertex based on the out-going neighbors
in the oriented graph. At Line 4 of Algorithm 1, we may choose the vertex
with larger number of neighbors as the hash table for intersection operation
with Θ(min{deg+(u), deg+(v)}) look-up cost. This can come up with a better
time complexity of Θ(

∑
〈u,v〉∈E

min{deg+(u), deg+(v)})). However, as reported

in [15,21] and our experiments, the practical performance of hash-based CF al-
gorithm is not competitive compared to the above merge-based CF algorithm.
Thus, the merge-based CF algorithm is used as the representative of CF algo-
rithm in the literature.

2.3 k-Clique Listing Algorithm (kClist)

We introduce the second state-of-the-art algorithm for in-memory triangle list-
ing. The kClist algorithm [9] lists cliques for a queried size k, we restrict our
discussion to the relevant use-case when k = 3 for listing triangles. kClist fol-
lows the node-iterator triangle listing paradigm which is described below.

Node-iterator. The “node-iterator” triangle listing paradigm lists triangles by
inspecting for adjacency between vertex pairs within one vertex neighborhood.
For example, consider the neighboring vertices of node u, if there is an edge
between two neighbors v2 and v3, then the triangle solution (u, v2, v3) is output.

k-Clique Listing (kClist) Algorithm. The kClist algorithm begins by gen-
erating an oriented graph G based on the degeneracy ordering [2]. We use η to
denote the degeneracy ordering here. In lines 3 - 5 of Algorithm 2, for every two
out-going neighbor v and w where η(v) < η(w), the existence of a directed edge
〈v, w〉 is assessed; for each edge found, a triangle solution is output.

vu pivot edge

w

x deg(u) < deg(v) < deg(w)

deg+(u) < deg+(v)

pivot vertex

a b c

Fig. 1. Limit of orientation technique

Analysis. The running time of kClist is Θ(m+
∑

u∈V deg+(u)× deg−(u)), this

can also be expressed as Θ(
∑

〈u,v〉∈E
deg+(v)). It is apparent that the time

complexity of kClist is an improvement compared to the CF algorithm which
takes Θ(

∑
〈u,v〉∈E

(deg+(u) + deg+(v))) time, its practical performance is also

shown to be efficient.

3 Our Approach

We introduce our adaptive orientation technique and implement it in our algo-
rithm, AOT, to push the efficiency boundary for main-memory triangle listing
algorithms.

3.1 Motivation and Problem Analysis

Since the proposal of the orientation technique, its nice properties and good
practical performance have allowed it to gradually become a valuable technique
utilized in subsequent studies of triangle listing.

Shortcoming of Orientation Technique. We recognize the prevalent usage
of this orientation technique, however, we respond by showing that although
current methods leverage the salient benefits of orientation, there are still finer
benefits that are overlooked.We argue that there are still ways to further leverage
properties that can improve the existing performances of triangle-listing. Our
goal is therefore to maximize the benefits of the orientation technique.

In the following discussion of oriented edges, relative to a vertex u, we refer
to edges 〈u, v〉 as positive edges if the out-degree relation of its adjacent vertex
v has an out-degree value that is greater or equal to that of the pivot vertex
(deg+(u) ≤ deg+(v)); we also refer to edges 〈u, v〉 as negative edges if the pivot
vertex has the greater out-degree value (deg+(u) > deg+(v)).

We refer to the time complexity of the kClist algorithm and see that it is
Θ(

∑
〈u,v〉∈E

deg+(v)) when listing triangles. However, this is not optimal for tri-

angle listing. In Figure 1, consider the point in the triangle listing computation
where triangles of edge 〈u, v〉 are processed. With respect to pivot vertex u,
deg+(v) is larger than that of deg+(u) since 4 > 3. The aforementioned com-
plexity is not favorable for processing this ordinary edge. Its issue is because its
cost is strictly that of deg+(v) (i.e., 4). Our observation is that, if we can reverse
the direction of the edge 〈u, v〉 to follow the out-degree vertex-order, we can
process 〈u, v〉 more favorably with deg+(u) (i.e., 3) and come up with a better
time complexity.

Solutions are non-trivial. Obviously, the optimal instance for a running time
of Θ(

∑
〈u,v〉∈E

deg+(v)) is an oriented graph G where all edges are positive.

However, most graphs do not exhibit that property: in most cases, not all graphs
edges {〈u, v〉} are necessarily positive at the same. Recall Figure 1: while edges
such as 〈u, x〉 and 〈u,w〉 are positive, negative edges such as 〈u, v〉 are also
possible.

We remedy the existence of negative edges by making a series of modifications
to the computed orientation of negative edges after it is oriented. One naive way
of achieving this is to manually change the direction of the oriented edge. For
example, there is a negative edge 〈u, v〉 in Figure 1, we see that it can become
a positive edge if its direction is simply changed to 〈v, u〉. This methodology is
limited because it ultimately undermines the total order used in the orientation,
moreover, changing 〈u, v〉 creates a cycle subgraph (u, x, v, u); this is a critical
complication since triangle (u, x, v) would surely be omitted and missing from
the result set of existing methods.

Ultimately, the out-degree of a vertex is a result of the orientation of its
incident edges, and therefore depends directly on the total ordering used for
the orientation techniques, it is difficult to significantly reduce the number of
negative edges by manually changing its orientation.

The main idea. As an alternative, we instead suggest modifying the computing
order of u and v on the fly when encountering negative edges instances {〈u, v〉}.
We notice that the CF algorithm cannot take advantage of this because its com-
plexity of Θ(deg+(u) + deg+(v)) for every edge 〈u, v〉 suggests that the design
of CF is insensitive to the direction of the edge. We also notice that the kClist
algorithm cannot do this either, because the accessing order of the vertices has
to strictly follow the degeneracy order on the oriented graph to ensure the cor-
rectness of the algorithm. We have showed that two state-of-the-art techniques
cannot trivially take advantage of this observation. In contrast, our algorithm
does not depend on any total order, any total order will be acceptable.

Following the above analysis, we are motivated to develop a technique that
tightens the boundary for efficient triangle listing, by taking advantage of the
resulting out-going degree order of each incoming edge, and adaptively listing
triangle based on its property. Our key idea involves selecting the optimal pivot
vertices for each triangle accordingly, such that each triangle is found only from
the vertex with a smaller out-going degree. This way we achieve the time com-
plexity Θ(min{deg+(u), deg+(v))) for every edge 〈u, v〉 ∈ E, which is now opti-
mal for a given oriented graph following the edge-iterator paradigm.

When finding the intersection between the out-going neighbors of adjacent
vertices u and v (i.e. N+(u)∩N+(v) for an oriented edge 〈u, v〉), there is a larger
and a smaller out-degree vertex, we use the hash-join approach as the appropriate
method to perform the set-intersection. Note that one hash-table here contain
the out-going neighbors for one single vertex. Following the hash-join approach,
we choose to look-up the out-going neighbors of the vertex with the lesser out-
degree in the hash structure of the vertex with the greater out-degree. However,
with one endpoint fixed, within its adjacent neighborhood, the endpoint with the
lesser out-degree vertex varies, to accomplish the former statement efficiently is
hard because it is not known in advance which endpoint has the smaller out-

positive pivot edge

w

u
negative pivot edge

y

u x
pivot vertex

(a) Positive triangle (b) Negative triangle

v
pivot vertex

Fig. 2. Motivation for Adaptive Orientation

degree vertex. The known solution requires both hash tables for either endpoints
be available when the edge is visited. There are two methods for constructing
the two indexes in advance: (1) Building hash tables of all graph vertices prior
to listing. Where this is a naive solution, it is computationally infeasible due to
its high storage demand and a high look-up cost. (2) For each vertex u, building
a hash table for all for its out-going neighbors on the fly. This is also infeasible
because one vertex is likely to need to rebuild its hash table multiple times
throughout the listing stage.

Categorizing Triangles. To facilitate understanding of technique, we discuss
two categorizes for each triangle in an oriented graph G: positive triangle or
negative triangle. The category of each triangle depends on its pivot edge: given
an oriented triangle, were refer to it as positive if its pivot edge 〈x, y〉 is positive
i.e. η(x) < η(y) and deg+(x) ≥ deg+(y); otherwise, it is negative if η(x) < η(y)
and deg+(x) < deg+(y), where η is the vertex ordering used in the orientation.

An example instance of positive and negative triangles is shown in Fig-
ures 2(a)-(b). We consider the two triangles from a sample graph with a common
vertex u, we note that without additional structural information from the graph,
the induced subgraphs u,v,w and x,u,y are isomorphic. However, with attention
to pivot edges 〈u, v〉 and 〈x, u〉, we observe that the two triangles are different
in terms of the out-going degree order (the dotted line points to the vertex with
the higher out-degree), and there for their orientation is different.

We propose seperate computations for the two types of triangles due to their
subtle differences, by selecting different respective piviot veritices. The selection
of the pivot vertex affects the amount of computation to list the triangle. If it
is a positive triangle, we remain consistent with the orientation technique and
use the vertex with two out-going edges as the pivot vertex (e.g. the vertex u in
Figure 2(a)). However, if it is a negative triangle, we select a different vertex as
the pivot vertex (e.g. u in Figure 2(b)).

A direct benefit from the above selection is that, every vertex u ∈ G is
now the pivot vertex for both positive and negative triangles solutions, where
the previous technique rigidly processes all triangles as positive triangles. In the
traditional orientation technique, both triangles would be processed equally and
listed by vertices u and x respectively, this was because the pivot vertex of each
triangle is strictly the vertex with two out-going edges and does not account for
our positive or negative triangle definitions. A desirable property of our adaptive
orientation technique is that this way each vertex u only needs to build a hash
table once for its out-going neighbors.

To conclude: For positive triangles with pivot vertex u, for each out-going
neighbor v of u (e.g. v in Figure 2(a)), we will look-up if each out-going neighbors
w of v (e.g. w in Figure 2(a)) is also in the hash table, to see if w is also an
out-going neighbor of u. For the negative triangles with pivot vertex u, for each
in-coming neighbor x of u (e.g. x in Figure 2(b)), we will look-up if each out-
going neighbor y of x (e.g. y in Figure 2(b)) is also in the hash table, to see if y
is also an out-going neighbor of u.

As we later show in the theoretical analysis in Section 3.2, our
proposed adaptive orientation technique achieves the time complexity of
Θ(

∑
〈u,v〉∈E

min{deg+(u), deg+(v)})) because, in terms of the hash-based in-

tersection, the look-up operations will always be performed on the vertex with
larger out-degree values for each oriented edge.

3.2 The Algorithm

We introduce the algorithm with our proposed adaptive orientation technique.
With reference to the pseudo-code in Algorithm 3, In line 1, the orientated graph
G is generated following the degree vertex order. In lines 2-13, a vertex u acts
as pivot vertex and lists its associated positive and negative triangles. For each
pivot vertex u, Line 3 generates a bitmap hash table H based on its adjacency
neighborhood.

For pivot vertex u, all positive triangles are enumerated in Lines 4-8. That
is, for each out-going neighbor v of u with deg+(v) < deg+(u) (i.e. positive pivot
edge), we find its out-going neighbors which are also out-going neighbors of u
by looking up the hash table H as illustrated in Figure 2(a).

Similarly, all negative triangles for pivot vertex u are enumerated in Lines
9-13. For each in-coming neighbor x of u with deg+(x) < deg+(u) (i.e. negative
pivot edge), we find its out-going neighbors which are also out-going neighbors
of u by looking up the hash table H as illustrated in Figure 2(b).

Correctness. To explain the correctness of our algorithm, we recall that each
oriented triangle in G belongs to either a positive type triangle or a negative
type triangle, we note that this is true for any vertex total-order.

Given an oriented triangle (u, v, w): such that u is the pivot vertex, and
〈u, v〉 is its pivot edge as illustrated in Figure 1. If deg+(v) < deg+(u), then
(u, v, w) is a positive triangle with pivot vertex u; given w is the common out-
going neighbor of u and v, a triangle will be output at Line 8 of Algorithm 3.
Otherwise, if the triangle is not positive i.e., if deg+(u) < deg+(v)3, (u, v, w) is
a negative triangle with pivot vertex v, this oriented triangle will be output at
Line 13 of Algorithm 3 when v is the pivot vertex, because w is the common out-
going neighbor of u and v. Evidently, this oriented triangle (u, v, w) will not be
output under any other scenario when following the oriented triangle technique.
Consequently, this showed that (u, v, w) will be output once and only once, the
correctness of the Algorithm 3 follows.

Time Complexity. We use a bitmap with size |V | to implement the hash table
H , where H [v.ID] = 1 if the vertex v is the out-going neighbor of the pivot

3 Recall that ties are broken by vertex ID.

Algorithm 3: Our Algorithm – AOT (G)

Input : G : an undirected graph
Output : All triangles in G

G← orientation graph of G based on degree-order;1

for u ∈ V (G) do2

Set-up the hash table H with IDs of the out-going neighbors of u (N+(u)) ;3

for every out-going neighbor v of u do4

if deg+(v) < deg+(u) then5

for every out-going neighbor w of v do6

if Find w in H then7

output triangle (u, v, w);8

for every in-coming neighbor x of u do9

if deg+(x) < deg+(u) then10

for every out-going neighbor y of x do11

if Find y in H then12

output triangle (u, x, y);13

vertex. For each pivot vertex u visited, we can use Θ(deg+(u)) time to initiate
or clean the hash table H . Thus, the maintenance of H takes Θ(2m) time.

Recall that for a pivot edge 〈u, v〉, the set of triangles it outputs can be
a mix of either positive or negative triangles. For every pivot edge 〈u, v〉, the
time complexity for its positive triangles is Θ(deg+(v)) with deg+(v) < deg+(u)
since the time complexity of Line 8 is Θ(1). Similarly, the time complexity for
its negative triangles is Θ(deg+(u)) with deg+(u) < deg+(v) since the time
complexity of Line 13 is Θ(1). It follows that the total time complexity of our
Algorithm 3 is Θ(

∑
〈u,v〉∈E

min{deg+(u), deg+(v)}))

Example 1. In Figure 3, the oriented graph has 14 vertices and 21 edges.
Out of the 21 edges, 9 for which have a deg+(v) value of greater than 0. For
∑

〈u,v〉∈E
deg+(v)): Edges 〈v1, v3〉, 〈v5, v7〉 and 〈v9, v11〉 each incur a cost of 3.

Edges 〈v2, v4〉, 〈v6, v8〉, 〈v10, v12〉 each incur a cost of 2. Edges 〈v3, v4〉, 〈v7, v8〉
and 〈v11, v12〉 each also incur a cost of 2. The remaining edges incur no cost.
In total,

∑
〈u,v〉∈E

deg+(v)) = 3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 2 = 21. For
∑

〈u,v〉∈E
min{deg+(u), deg+(v)}): Edges 〈v1, v3〉, 〈v5, v7〉 and 〈v9, v11〉 each in-

cur a cost of 1. Edges 〈v2, v4〉, 〈v6, v8〉, 〈v10, v12〉 each also incur a cost of 1. Edges
〈v3, v4〉, 〈v7, v8〉 and 〈v11, v12〉 each incur a cost of 2. The remaining edges incur no
cost. In total,

∑
〈u,v〉∈E

min{deg+(u), deg+(v)}) = 1+1+1+1+1+1+2+2+2=
12.

The former is a calculation of the computation required by the state-of-the-
art, the latter is the computations required by our algorithm. In comparison,
Example 1 illustrates that our algorithm incurs significantly fewer computation
to list triangles. Where the costs for some edges is the same between two algo-
rithms, our algorithm uses less computation for edges 〈v1, v3〉, 〈v5, v7〉, 〈v9, v11〉,
〈v2, v4〉, 〈v6, v8〉 and 〈v10, v12〉.

v3

v1

v4

v2

v7

v5

v8

v6

v11

v9

v12

v10

v13 v14

Fig. 3. Example Graph

Remark 2. Note that the bitmap hash table cannot be deployed by CF-Hash
technique. Clearly, on large graphs we cannot afford to construct |V | bitmap
hash tables each of which has size |V |. On the other hand, it is time consuming to
build H on the fly because, unlike we build the hash table H only once4 for each
vertex in AOT algorithm, H might be built multiple times for a vertex because
it’s hash table will be chosen (i.e., build on the fly) by CF-Hash algorithm once
its hash table size is smaller than that of pivot vertex.

Space Complexity.
We only need to keep the graph G, the oriented graph G and the global

hash table H , as a result, Algorithm 3 is space efficient, with space complexity
O(m+ n) where m is the number of edges and n is the number of vertices in G.

Exploiting Local Order. In addition to the global vertex order, we also con-
sider a local vertex ordering used to store vertices within the scope for each
vertex neighborhood list (i.e. local order). In Algorithm 3, the dominant cost is
the hash table look-ups happen at Lines 7 and 12. There is a good chance that a
vertex w will be repeatedly checked because of the overlap of the neighborhood.
Ideally, the ID of w should be kept in the CPU cache such that the following
look-up of w can be processed efficiently. We may design sophisticate local or-
dering strategy with some assumptions on the workload such that the neighbors
of a (pivot) vertex is well organized by their neighborhood similarity. However,
we cannot afford such cost for the preprocessing. In this paper, we order the
vertices in the adjacent list of a vertex by the decreasing order of their degree;
that is, we visit the vertices at Lines 4 and 9 in Algorithm 3 following the degree
order. This is because we believe the vertex with a high degree is more likely
to have common neighbors with other vertices. For each vertex, we can keep its
neighbors with this local order in the adjacent list. Our empirical study confirms
the efficiency of this local order strategy.

4 Experimental Study

Algorithms. To show the efficiency of our proposed technique, we compare
our proposed algorithm with the following state-of-the-art methods. In total, we
make comparisons between the four algorithms listed below.

– CF [15,21]. The CF algorithm, presented in Section 2.2.
– CF-Hash [15,21]. A variant of CF, where the intersection of two adjacency

lists are implemented by hashing.

4 When it is chosen as the pivot vertex

Graph #Nodes (M) #Edges (M) Avg. Degree Max. Degree #Triangles (M)
web-baidu-baike 2.14 17.01 8 97,848 25.21
uk-2014-tpd 1.77 15.28 9 63,731 259.04
actor 0.38 15.04 39 3,956 346.81
flicker 1.62 15.48 10 27,236 548.65
uk-2014-host 4.77 40.21 8 726,244 2,509.74
sx-stackoverflow 6.02 28.18 5 44,065 114.21
ljournal-2008 5.36 49.51 9 19,432 411.16
soc-orkut 3.00 106.35 35 27,466 524.64
hollywood-2011 2.18 114.49 53 13,107 7,073.95
indochina-2004 7.41 150.98 20 256,425 60,115.56
soc-sinaweibo 58.66 261.32 4 278,489 212.98
wikipedia link en 12.15 288.26 24 962,969 11,686.21
arabic-2005 22.74 553.90 24 3,247 36,895.36
uk-2005 39.46 783.03 20 5,213 21,779.37
it-2004 41.29 1,027.47 25 9,964 48,374.55
twitter-2010 41.65 1,202.51 29 2,997,487 34,824.92

Table 2. Statistics of 16 Datasets.

– kClist [9]. The kClist algorithm for triangle listing, presented in Section 2.3.
– AOT. Our proposed algorithm with adaptive orientation and local ordering,

presented in Section 3.2.

The source-code for the assessment of CF , kClist, and CF -Hash are ac-
quired from their respective authors. We note that for CF and CF -Hash, we
use the implementation from [21] named TC-Merge and TC-Hash respectively,
due to their more efficient implementations.

Datasets. The datasets used in the experiments are listed in Table 2. We used
16 large real-world graphs with up to a billion edges. Networks are treated as
undirected simple graphs, and are processed appropriately.

Settings. The tests are run on a 64 bit Linux machine with a Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30GHz processor, the L1, L2 and L3 cache of 32K, 256K,
and 25600K respectively, with 591 GB of available RAM.

100

101

102

103

104

web-baidu-baike

uk-2014-tpd

actor
flicker

uk-2014-host

sx-stackoverflow

ljournal-2008

soc-orkut

indochina-2004

hollywood-2011

soc-sinaweibo

wikipedia-link-en

arabic-2005

uk-2005

it-2004
twitter-2010

P
ro

ce
ss

in
g

T
im

e

AOT KClist CF TC-Hash

Fig. 4. Performance Analysis

4.1 Results against the State-of-the-art

Figure 4 reports the relative running times of the algorithms tested. The mea-
sured time captures the elapsed time between the point when the graph is loaded
until the point of successful program termination. For the state-of-the-art meth-
ods, the kClist algorithm requires fewer running time than the CF algorithm. For
datasets containing up to 100 million edges, kClist is observed to significantly
outperform CF; this gap in running time is less significant for graphs where the
edge count is greater than 100 million. There are also instances where CF is
more efficient than kClist, as observed in the social-network soc-sinaweibo.

In comparison, our algorithm AOT consistently outperforms the
two state-of-the-art, which supports the tightened running bound of∑

{u,w}∈E min(deg+(u), deg+(v)) from its theoretical analysis. We notice that

on a large graph twitter-2010 that has 41.65 million vertices, 1.2 billion edges
and contains 35 billion triangles, the observed running times of kClist and CF are
2, 381 seconds and 4, 230 seconds respectively. In contrast, our algorithm listed
all triangles in twitter-2010 in 433 seconds and achieved a speedup of 10-times. It
is noticed that hash-based CF (CF-Hash) is consistently outperformed by AOT
with big margins, though two algorithms have the same asymptotic behavior.
This is because the high efficiency of look-up operation of the bitmap hash table
as well as the local ordering technique in AOT algorithm. Recall that, with-
out the adaptive orientation technique proposed in this paper, hash-based CF
cannot take this advantage. This reflects the non-trivial nature of our adaptive
orientation technique.

100

101

102

103

web-baidu-baike

uk-2014-tpd

actor
flicker

uk-2014-host

sx-stackoverflow

ljournal-2008

soc-orkut

indochina-2004

hollywood-2011

soc-sinaweibo

wikipedia-link-en

arabic-2005

uk-2005

it-2004
twitter-2010

P
ro

ce
ss

in
g

T
im

e

AOT AOT-randomOrder CF

Fig. 5. Incremental Improvements

4.2 More on AOT

To show the efficiency of our algorithm, we evaluate the benefits for having adap-
tive orientation and local ordering in our technique. For this setting, a baseline
method is one that has neither adaptive orientation or local ordering. We con-
sider CF algorithm as a proper baseline since it uses the existing orientation
technique, but uses neither of the aforementioned techniques. In addition to con-
sidering the AOT algorithm with both adaptive orientation and local ordering.
We also require an algorithm that uses adaptive orientation without utilizing a

local ordering technique, for this, we consider our AOT algorithm with a random
local ordering, denoted later as AOT -randomOrder.

As we can see in Figure 5, the processing time decreases after introducing
adaptive orientation and the local ordering strategy. In comparison to the base-
line processing time, the adaptive orientation contributes a greater drop in pro-
cessing time compared to that from the later adoption of the local-order strategy
Where the difference between AOT -randomOrder and CF is greater than that
between AOT and AOT -randomOrder. This highlights that our adaptive ori-
entation technique performs better than the orientation technique in its current
state. Furthermore, the results also show that using a local order reduces the
running time needed on most graphs; this can be explained by an improvement
in the algorithms cache performance.

4.3 Parallel Experiments

Our algorithm AOT can be easily made parallel. This is achieved by processing
vertices in parallel. As a result, we analyze the parallelism of our algorithm
and compare it against the state-of-the-art methods. TC-Merge (i.e., parallel
implementation of CF proposed in [15]), TC-Hash and kClist all provided
parallel implementations of their algorithms. For this parallel experiment, we
consider the two largest datasets It-2004 and Twitter-2010.

100

101

102

103

1 2 4 8 16

 P
ro

ce
ss

in
g

T
im

e

Number of Threads

TC-Hash
TC-Merge
kClist
AOT

(a) It-2004

101

102

103

104

1 2 4 8 16

 P
ro

ce
ss

in
g

T
im

e

Number of Threads

TC-Hash
TC-Merge
kClist
AOT

(b) Twitter-2010

Fig. 6. Evaluating Parallel Performance

As seen in Figure 6, increasing the number of threads decreases the amount
of processing time needed to list all triangles, this is expected and true for all
four algorithms tested. In the case of kClist, the drop is less pronounced for
both networks after 4 threads. In the case of TC-Merge and TC-Hash, the
drop in processing time is not visible when handling It-2004 past 8 threads. In
contrast, this decrease is visible for our method AOT across both datasets. All
in all, AOT is consistently the fastest method in this parallel experiments.

5 Related Work

Triangle Listing In-memory algorithms for listing triangles have been exten-
sively studied in the literature. The edge-iterator [1] and node-iterator [13] are
two popular triangle listing computing paradigms, which share the same asymp-
totic behavior [20]. A lot of subsequent algorithms are mostly improvements

based on the original two paradigms. While Ortmann was the first to formalize
a generalized framework based on undirected graph orientation, past literature
Forward and Compact Forward(CF) had previously considered triangle-listing
on induced directed graphs with respect to a vertex ordering [20]. In literature,
the orientation technique is observed beyond triangle-listing; it is also applied
for higher-order structure enumeration [9]. In more recent years, the topics
of interest have shifted to parallel/distributed processing (e.g.,[21,16]), efficient
I/O external memory methods (e.g.,[7,12], and the asymptotic cost analysis of
triangle listing in random graphs [24].

Triangle Counting The triangle counting is a related problem to the triangle
listing problem, solving the listing problem solves the counting problem. The
triangle counting problem is the task to find the total number of triangles in
a graph G. Compared to listing algorithms, counting algorithms find ways to
compute the number without relying on the exploration of triangle instances.
Many algorithms have been designed to count triangles (e.g., [3,17,14]). Approx-
imate methods are useful for settings that handle large-scale graphs, or settings
where a given approximation is as useful as knowing the exact triangle count
(e.g.,[22,23]).

6 Conclusion

The triangle listing is a fundamental problem in graph analysis with a wide
range of applications. This problem has been extensively studied in the litera-
ture. Although many efficient main memory algorithms based on the efficient
orientation technique have been proposed, in this paper, we pushed the effi-
ciency boundary of the triangle listing and developed a new algorithm with
best theoretical time complexity and practical performance. On the theoret-
ical side, we showed that our proposed algorithm has the time complexity
Θ(

∑
〈u,v〉∈E

min{deg+(u), deg+(v)})) where E is the directed edges in the ori-

ented graph, which is the best known theoretical time complexity for the prob-
lem of in-memory triangle listing so far. On the practical side, our comprehensive
experiments over 16 real-life large graphs show the superior performance of our
AOT algorithm compared with two state-of-the-art techniques, especially on
large-scale graphs with billions of edges.

Acknowledgement

Lu Qin is is supported by ARC DP160101513. Ying Zhang is supported
by FT170100128 and ARC DP180103096, Wenjie Zhang is supported by
ARC DP180103096 and ARC DP200101116. Xuemin Lin is supported by
2018YFB1003504, ARC DP200101338, NSFC61232006, ARC DP180103096 and
DP170101628.

References

1. Batagelj, V., Mrvar, A.: A subquadratic triad census algorithm for large sparse
networks with small maximum degree. Social Networks 23(3) (2001)

2. Batagelj, V., Zaveršnik, M.: Generalized cores. arXiv preprint cs/0202039 (2002)

3. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: Proc. of SIGKDD’08 (2008)

4. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale
local triangle counting. TKDD 4(3) (2010)

5. Berry, J.W., Hendrickson, B., LaViolette, R.A., Phillips, C.A.: Tolerating the com-
munity detection resolution limit with edge weighting. Physical Review E 83(5)
(2011)

6. Chou, B.H., Suzuki, E.: Discovering community-oriented roles of nodes in a social
network. In: Proc. of DaWaK’10 (2010)

7. Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In:
Proc. of KDD’11 (2011)

8. Chu, S., Cheng, J.: Triangle listing in massive networks. TKDD 6(4) (2012)
9. Danisch, M., Balalau, O., Sozio, M.: Listing k-cliques in sparse real-world graphs.

In: Proc. of WWW’18 (2018)
10. Giechaskiel, I., Panagopoulos, G., Yoneki, E.: Pdtl: Parallel and distributed triangle

listing for massive graphs. In: Proc. of ICPP’15 (2015)
11. Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In: Proc. of SIG-

MOD’13 (2013)
12. Hu, X., Tao, Y., Chung, C.: I/o-efficient algorithms on triangle listing and counting.

ACM Trans. Database Syst. 39(4) (2014)
13. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on

Computing 7(4) (1978)
14. Kolda, T.G., Pinar, A., Plantenga, T.D., Seshadhri, C., Task, C.: Counting tri-

angles in massive graphs with mapreduce. SIAM J. Scientific Computing 36(5)
(2014)

15. Latapy, M.: Main-memory triangle computations for very large (sparse (power-
law)) graphs. Theor. Comput. Sci. 407(1-3) (2008)

16. Park, H.M., Myaeng, S.H., Kang, U.: Pte: Enumerating trillion triangles on dis-
tributed systems. In: Proc. of SIGKDD’16 (2016)

17. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.: Counting and sampling tri-
angles from a graph stream. PVLDB 6(14) (2013)

18. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. PNAS 101(9) (2004)

19. Schank, T.: Algorithmic Aspects of Triangle-Based Network Analysis. Ph.D. thesis,
Universitat Karlsruhe (TH) (2007)

20. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: International workshop on experimental and efficient
algorithms. Springer (2005)

21. Shun, J., Tangwongsan, K.: Multicore triangle computations without tuning. In:
Proc. of ICDE’15 (2015)

22. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: DOULION: counting
triangles in massive graphs with a coin. In: Proc. of SIGKDD’09 (2009)

23. Türkoglu, D., Turk, A.: Edge-based wedge sampling to estimate triangle counts in
very large graphs. In: Proc. of ICDM’17 (2017)

24. Xiao, D., Cui, Y., Cline, D.B., Loguinov, D.: On asymptotic cost of triangle listing
in random graphs. In: PODS. pp. 261–272. ACM (2017)

25. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algo-
rithm for networks. In: Proc. of SIGKDD’07 (2007)

26. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proc. of SIGKDD’07 (2017)

27. Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing triangle k-core
motifs within networks. In: Proc. of ICDE’12 (2012)

	 AOT: Pushing the Efficiency Boundary of Main-memory Triangle Listing

