Skip to main content

DDFL: A Deep Dual Function Learning-Based Model for Recommender Systems

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

Abstract

Over the last two decades, latent-based collaborative filtering (CF) has been extensively studied in recommender systems to match users with appropriate items. In general, CF can be categorized into two types: matching function learning-based CF and representation learning-based CF. Matching function-based CF uses a multi-layer perceptron to learn the complex matching function that maps user-item pairs to matching scores, while representation learning-based CF maps users and items into a common latent space and adopts dot product to learn their relationship. However, the dot product is prone to overfitting and does not satisfy the triangular inequality. Different from latent based CF, metric learning represents user and item into a low dimensional space, measures their explicit closeness by Euclidean distance and satisfies the triangular inequality. In this paper, inspired by the success of metric learning, we supercharge metric learning with non-linearities and propose a Metric Function Learning (MeFL) model to learn the function that maps user-item pairs to predictive scores in the metric space. Moreover, to learn the mapping more comprehensively, we further combine MeFL with a matching function learning model into a unified framework and name this new model Deep Dual Function Learning (DDFL). Extensive empirical results on four benchmark datasets are conducted and the results verify the effectiveness of MeFL and DDFL over state-of-the-art models for implicit feedback prediction.

Supported by the National Natural Science Foundation of China under Grant No. 61672252, and the Fundamental Research Funds for the Central Universities under Grant No. 2019kfyXKJC021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://grouplens.org/datasets/movielens/.

  2. 2.

    http://trust.mindswap.org/FilmTrust/.

  3. 3.

    http://jmcauley.ucsd.edu/data/amazon/.

  4. 4.

    https://github.com/keras-team/keras.

  5. 5.

    https://github.com/tensorflow/tensorflow.

  6. 6.

    https://github.com/cheungdaven/metricfactorization.

  7. 7.

    https://github.com/familyld/DeepCF.

References

  1. Aggarwal, C.C., Parthasarathy, S.: Mining massively incomplete data sets by conceptual reconstruction. In: Proceedings of ACM SIGKDD, pp. 227–232 (2001)

    Google Scholar 

  2. Bayer, I., He, X., Kanagal, B., Rendle, S.: A generic coordinate descent framework for learning from implicit feedback. In: Proceedings of WWW, pp. 1341–1350 (2017). https://doi.org/10.1145/3038912.3052694

  3. Deng, Z., Huang, L., Wang, C., Lai, J., Yu, P.S.: DeepCF: a unified framework of representation learning and matching function learning in recommender system. In: Proceedings of AAAI, pp. 61–68 (2019). https://doi.org/10.1609/aaai.v33i01.330161

  4. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: Proceedings of WWW, pp. 173–182 (2017)

    Google Scholar 

  5. He, X., Zhang, H., Kan, M., Chua, T.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of ACM SIGIR, pp. 549–558 (2016). https://doi.org/10.1145/2911451.2911489

  6. Hong, R., Hu, Z., Liu, L., Wang, M., Yan, S., Tian, Q.: Understanding blooming human groups in social networks. IEEE Trans. Multimedia 17(11), 1980–1988 (2015)

    Article  Google Scholar 

  7. Hsieh, C., Yang, L., Cui, Y., Lin, T., Belongie, S.J., Estrin, D.: Collaborative metric learning. In: Proceedings of WWW, pp. 193–201 (2017)

    Google Scholar 

  8. Hu, Q., Zhao, Z., Wang, C., Lai, J.: An item orientated recommendation algorithm from the multi-view perspective. Neurocomputing 269, 261–272 (2017)

    Article  Google Scholar 

  9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of ICDM, pp. 263–272 (2008)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (Poster) (2015). http://arxiv.org/abs/1412.6980

  11. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of ACM SIGKDD, pp. 426–434 (2008)

    Google Scholar 

  12. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of ACM SIGKDD, pp. 447–456 (2009)

    Google Scholar 

  13. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009)

    Article  Google Scholar 

  14. Li, W., Huo, J., Shi, Y., Gao, Y., Wang, L., Luo, J.: Online deep metric learning. CoRR abs/1805.05510 (2018)

    Google Scholar 

  15. Mnih, A., Teh, Y.W.: Learning label trees for probabilistic modelling of implicit feedback. In: Proceedings of NIPS, pp. 2825–2833 (2012)

    Google Scholar 

  16. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-N recommender systems. In: Proceedings of ICDM, pp. 497–506 (2011)

    Google Scholar 

  17. Pan, R., et al.: One-class collaborative filtering. In: Proceedings of ICDM, pp. 502–511 (2008)

    Google Scholar 

  18. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of KDD Cup and Workshop 2007, pp. 5–8 (2007)

    Google Scholar 

  19. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of UAI, pp. 452–461 (2009)

    Google Scholar 

  20. Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In: Proceedings of ACM RecSys, pp. 251–258 (2008)

    Google Scholar 

  21. Salakhutdinov, R., Mnih, A., Hinton, G.E.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of ICML, pp. 791–798 (2007)

    Google Scholar 

  22. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of WWW, pp. 285–295 (2001)

    Google Scholar 

  23. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: Proceedings of WWW, pp. 111–112 (2015). https://doi.org/10.1145/2740908.2742726

  24. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models. In: Proceedings of AAAI, pp. 3776–3784 (2016)

    Google Scholar 

  25. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of NIPS, pp. 926–934 (2013)

    Google Scholar 

  26. Strub, F., Mary, J.: Collaborative filtering with stacked denoising autoencoders and sparse inputs. In: NIPS Workshop on Machine Learning for eCommerce, Montreal, Canada (2015)

    Google Scholar 

  27. Tay, Y., Tuan, L.A., Hui, S.C.: Latent relational metric learning via memory-based attention for collaborative ranking. In: Proceedings of WWW, pp. 729–739 (2018)

    Google Scholar 

  28. Wang, C., Deng, Z., Lai, J., Yu, P.S.: Serendipitous recommendation in E-commerce using innovator-based collaborative filtering. IEEE Trans. Cybern. 49(7), 2678–2692 (2019)

    Article  Google Scholar 

  29. Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: Proceedings of IJCAI, pp. 3203–3209 (2017). https://doi.org/10.24963/ijcai.2017/447

  30. Zhang, S., Yao, L., Huang, C., Xu, X., Zhu, L.: Position and distance: recommendation beyond matrix factorization. CoRR abs/1802.04606 (2018). http://arxiv.org/abs/1802.04606

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, S.T.U., Li, J., Guo, Z., Li, G., Zhou, Q. (2020). DDFL: A Deep Dual Function Learning-Based Model for Recommender Systems. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics