Skip to main content

Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12117))

Abstract

Farmers need to detect any anomaly in animals as soon as possible for production efficiency (e.g. detection of estrus) and animal welfare (e.g. detection of diseases). The number of animals per farm is however increasing, making it difficult to detect anomalies. To help solving this problem, we undertook a study on dairy cows, in which their activity was captured by an indoor tracking system and considered as time series. The state of cows (diseases, estrus, no problem) was manually labelled by animal caretakers or by a sensor for ruminal pH (acidosis). In the present study, we propose a new Fourier based method (FBAT) to detect anomalies in time series. We compare FBAT with the best machine learning methods for time series classification in the current literature (BOSS, Hive-Cote, DTW, FCN and ResNet). It follows that BOSS, FBAT and deep learning methods yield the best performance but with different characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adewumi, A.O., Akinyelu, A.A.: A survey of machine-learning and nature-inspired based credit card fraud detection techniques. Int. J. Syst. Assurance Eng. Manag. 8(2), 937–953 (2017)

    Article  Google Scholar 

  2. Bagnall, Anthony., Lines, Jason., Bostrom, Aaron., Large, James, Keogh, Eamonn: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  3. Berkaya, S.K., et al.: A survey on ECG analysis. Biomed. Signal Process. Control 43, 216–235 (2018)

    Article  Google Scholar 

  4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  5. Corizzo, R., Ceci, M., Japkowicz, N.: Anomaly detection and repair for accurate predictions in geo-distributed big data. Big Data Res. 16, 18–35 (2019)

    Article  Google Scholar 

  6. Fawaz, H.I., et al.: Deep learning for time series classification: a review. Data Mining Knowl. Discov. 33(4), 917–963 (2019)

    Google Scholar 

  7. He et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Lines, J., Taylor, S., Bagnall, A.: Hive-cote: the hierarchical vote collective of transformation-based ensembles for time series classification. In: 2016 IEEE 16th International Conference on data Mining (ICDM), pp. 1041–1046. IEEE (2016)

    Google Scholar 

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  10. Marwah, R., Cawkwell, F., Hennessy, D., Green, S.: Improved estimation of grassland biomass using machine learning and satellite data. In: 9th ECPLF 2019, pp. 174–179. Teagasc (2019)

    Google Scholar 

  11. Mollenhors, H., de Haan, M., Oenema, J., Hoving-Bolink, A., Veerkamp, R., Kamphuis, C.: Machine learning to realize phosphate equilibrium at field level in dairy farming. In: 9th ECPLF 2019, pp. 41–44. Teagasc (2019)

    Google Scholar 

  12. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7, 1991–2005 (2018)

    Article  Google Scholar 

  13. Ruiz, E.V., Nolla, F.C., Segovia, H.R.: Is the DTW “distance” really a metric? An algorithm reducing the number of DTW comparisons in isolated word recognition. Speech Commun. 4(4), 333–344 (1985)

    Article  Google Scholar 

  14. Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)

    Article  MathSciNet  Google Scholar 

  15. Veissier, I., Mialon, M.M., Sloth, K.H.: Early modification of the circadian organization of cow activity in relation to disease or estrus. J. Dairy Sci. 100(5), 3969–3974 (2017)

    Article  Google Scholar 

  16. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  17. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

    Google Scholar 

  18. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf. Technol. Decision Making 5(04), 597–604 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

This collaborative work was made possible thanks to the French Government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20–25). The PhD grant for N. Wagner was provided by INRA and Université Clermont Auvergne. We thank the HERBIPOLE staff, B. Meunier, Y. Gaudron and M. Silberberg for data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, N., Antoine, V., Koko, J., Mialon, MM., Lardy, R., Veissier, I. (2020). Comparison of Machine Learning Methods to Detect Anomalies in the Activity of Dairy Cows. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2020. Lecture Notes in Computer Science(), vol 12117. Springer, Cham. https://doi.org/10.1007/978-3-030-59491-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59491-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59490-9

  • Online ISBN: 978-3-030-59491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics