Skip to main content

Tailoring Random Forest for Requirements Classification

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2020)

Abstract

Automated and semi-automated classifications of requirements (type and topics) are important for making requirements management more efficient. We report how we tailored a random forest approach in the EU funded project OpenReq, aiming for sufficient quality for practical use in bid projects. Evaluation with thirty thousand requirements in English from nine tender documents for rail automation systems in various countries show that user expectations are hard to meet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://openreq.eu/.

  2. 2.

    http://www.nltk.org/, accessed 09.01.2020.

  3. 3.

    Project names are confidential – therefore we use numbers 1 to 3.

References

  1. Aggarwal, C.C.: Machine Learning for Text. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73531-3

    Book  MATH  Google Scholar 

  2. Allahyari, M., et al.: A brief survey of text mining: classification, clustering and extraction techniques. CoRR abs/1707.02919 (2017)

    Google Scholar 

  3. Altınel, B., Ganiz, M.C.: Semantic text classification: a survey of past and recent advances. Inf. Process. Manag. 54(6), 1129–1153 (2018)

    Article  Google Scholar 

  4. Bekkar, M., Djemaa, H.K., Alitouche, T.A.: Evaluation measures for models assessment over imbalanced datasets. J. Inf. Eng. Appl. 3(10), 27–38 (2013)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  7. Chen, K., Zhang, Z., Long, J., Zhang, H.: Turning from TF-IDF to TF-IGM for term weighting in text classification. Expert Syst. Appl. 66, 245–260 (2016)

    Article  Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Falkner, A., Palomares, C., Franch, X., Schenner, G., Aznar, P., Schoerghuber, A.: Identifying requirements in requests for proposal: a research preview. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 176–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_13

    Chapter  Google Scholar 

  10. Fucci, D., et al.: Needs and challenges for a platform to support large-scale requirements engineering. A multiple case study. CoRR abs/1808.02284 (2018)

    Google Scholar 

  11. Gupta, P., Schütze, H., Andrassy, B.: Table filling multi-task recurrent neural network for joint entity and relation extraction. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2537–2547 (2016)

    Google Scholar 

  12. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  13. Kadhim, A.I.: Survey on supervised machine learning techniques for automatic text classification. Artif. Intell. Rev. 52(1), 273–292 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ko, Y., Park, S., Seo, J., Choi, S.: Using classification techniques for informal requirements in the requirements analysis-supporting system. Inf. Softw. Technol. 49(11–12), 1128–1140 (2007)

    Article  Google Scholar 

  15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  16. Moser, T., Winkler, D., Heindl, M., Biffl, S.: Requirements management with semantic technology: an empirical study on automated requirements categorization and conflict analysis. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 3–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_3

    Chapter  Google Scholar 

  17. Ott, D.: Automatic requirement categorization of large natural language specifications at Mercedes-Benz for review improvements. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 50–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37422-7_4

    Chapter  Google Scholar 

  18. Pinquié, R., Véron, P., Segonds, F., Croué, N.: Requirement mining for model-based product design. Int. J. Product Lifecycle Manag. 9(4), 305–332 (2016)

    Article  Google Scholar 

  19. Schörghuber, A.: Classification of requirements in the tender process. Master’s thesis, University of Technology Vienna, Vienna (2019)

    Google Scholar 

  20. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  21. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002)

    Article  Google Scholar 

  22. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  23. Tosun, A., Bener, A.: Reducing false alarms in software defect prediction by decision threshold optimization. In: Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, pp. 477–480 (2009)

    Google Scholar 

Download references

Acknowledgments

The work presented here has been conducted in the scope of the Horizon 2020 project OpenReq, supported by the European Union under Grant Nr. 732463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Falkner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falkner, A., Schenner, G., Schörghuber, A. (2020). Tailoring Random Forest for Requirements Classification. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2020. Lecture Notes in Computer Science(), vol 12117. Springer, Cham. https://doi.org/10.1007/978-3-030-59491-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59491-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59490-9

  • Online ISBN: 978-3-030-59491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics