Skip to main content

UltraGAN: Ultrasound Enhancement Through Adversarial Generation

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2020)

Abstract

Ultrasound images are used for a wide variety of medical purposes because of their capacity to study moving structures in real time. However, the quality of ultrasound images is significantly affected by external factors limiting interpretability. We present UltraGAN, a novel method for ultrasound enhancement that transfers quality details while preserving structural information. UltraGAN incorporates frequency loss functions and an anatomical coherence constraint to perform quality enhancement. We show improvement in image quality without sacrificing anatomical consistency. We validate UltraGAN on a publicly available dataset for echocardiography segmentation and demonstrate that our quality-enhanced images are able to improve downstream tasks. To ensure reproducibility we provide our source code and training models.

M. Escobar and A. Castillo—Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/BCV-Uniandes/UltraGAN.

References

  1. Abdi, A.H., Jafari, M.H., Fels, S., Tsang, T., Abolmaesumi, P.: A study into echocardiography view conversion. In: Workshop of Medical Imaging Meets NeurIPS (2019)

    Google Scholar 

  2. Abdi, A.H., Tsang, T., Abolmaesumi, P.: GAN-enhanced conditional echocardiogram generation. In: Workshop of Medical Imaging Meets NeurIPS (2019)

    Google Scholar 

  3. Abhishek, K., Hamarneh, G.: Mask2Lesion: mask-constrained adversarial skin lesion image synthesis. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) Simulation and Synthesis in Medical Imaging, pp. 71–80. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_8

    Chapter  Google Scholar 

  4. Armstrong, A.C., et al.: Quality control and reproducibility in M-mode, two-dimensional, and speckle tracking echocardiography acquisition and analysis: the cardia study, year 25 examination experience. Echocardiography 32(8), 1233–1240 (2015)

    Article  Google Scholar 

  5. Cahalan, M.K., et al.: American society of echocardiography and society of cardiovascular anesthesiologists task force guidelines for training in perioperative echocardiography. J. Am. Soc. Echocardiogr. 15(6), 647–652 (2002)

    Article  Google Scholar 

  6. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Intelligent image synthesis to attack a segmentation CNN using adversarial learning. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) Simulation and Synthesis in Medical Imaging, pp. 90–99. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_10

    Chapter  Google Scholar 

  7. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6306–6314 (2018)

    Google Scholar 

  8. Deshpande, A., Lu, J., Yeh, M.C., Jin Chong, M., Forsyth, D.: Learning diverse image colorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6837–6845 (2017)

    Google Scholar 

  9. Duarte-Salazar, C.A., Castro-Ospina, A.E., Becerra, M.A., Delgado-Trejos, E.: Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: an overview. IEEE Access 8, 15983–15999 (2020)

    Article  Google Scholar 

  10. Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: ICCV Workshop (2019)

    Google Scholar 

  11. Gardin, J.M., et al.: Recommendations for a standardized report for adult transthoracic echocardiography: a report from the American society of echocardiography’s nomenclature and standards committee and task force for a standardized echocardiography report. J. Am. Soc. Echocardiogr. 15(3), 275–290 (2002)

    Article  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Gottdiener, J.S., et al.: American society of echocardiography recommendations for use of echocardiography in clinical trials: a report from the American society of echocardiography’s guidelines and standards committee and the task force on echocardiography in clinical trials. J. Am. Soc. Echocardiogr. 17(10), 1086–1119 (2004)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  15. Jafari, M.H., et al.: Semi-supervised learning for cardiac left ventricle segmentation using conditional deep generative models as prior. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 649–652. IEEE (2019)

    Google Scholar 

  16. Jafari, M.H., et al.: Cardiac point-of-care to cart-based ultrasound translation using constrained cyclegan. Int, J. Comput. Assist. Radiol. Surg. 15(5), 877–886 (2020). https://doi.org/10.1007/s11548-020-02141-y

  17. Jafari, M.H., et al.: Echocardiography segmentation by quality translation using anatomically constrained CycleGAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 655–663. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_73

    Chapter  Google Scholar 

  18. Lartaud, P.-J., Rouchaud, A., Rouet, J.-M., Nempont, O., Boussel, L.: Spectral CT based training dataset generation and augmentation for conventional CT vascular segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 768–775. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_85

    Chapter  Google Scholar 

  19. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  20. Liao, Z., et al.: Echocardiography view classification using quality transfer star generative adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 687–695. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_76

    Chapter  Google Scholar 

  21. Mazaheri, S., et al.: Echocardiography image segmentation: a survey. In: 2013 International Conference on Advanced Computer Science Applications and Technologies, pp. 327–332. IEEE (2013)

    Google Scholar 

  22. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  23. Ng, A., Swanevelder, J.: Resolution in ultrasound imaging. Continuing Educ. Anaesth. Crit. Care Pain 11(5), 186–192 (2011)

    Article  Google Scholar 

  24. Oliva, A., Torralba, A., Schyns, P.G.: Hybrid images. ACM Trans. Graph. (TOG) 25(3), 527–532 (2006)

    Article  Google Scholar 

  25. Ortiz, S.H.C., Chiu, T., Fox, M.D.: Ultrasound image enhancement: a review. Biomed. Signal Process. Control 7(5), 419–428 (2012)

    Article  Google Scholar 

  26. Romero, A., Arbeláez, P., Van Gool, L., Timofte, R.: SMIT: stochastic multi-label image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Wang, X., Chan, K.C., Yu, K., Dong, C., Loy, C.C.: EDVR: video restoration with enhanced deformable convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  29. Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_20

    Chapter  Google Scholar 

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Acknowledgements

The present study is funded by MinCiencias, contract number 853-2019 project ID# 120484267276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Escobar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobar, M., Castillo, A., Romero, A., Arbeláez, P. (2020). UltraGAN: Ultrasound Enhancement Through Adversarial Generation. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science(), vol 12417. Springer, Cham. https://doi.org/10.1007/978-3-030-59520-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59520-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59519-7

  • Online ISBN: 978-3-030-59520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics