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Abstract. Automatic analyses and comparisons of different stages of
embryonic development largely depend on a highly accurate spatiotem-
poral alignment of the investigated data sets. In this contribution, we
assess multiple approaches for automatic staging of developing embryos
that were imaged with time-resolved 3D light-sheet microscopy. The
methods comprise image-based convolutional neural networks as well as
an approach based on the PointNet architecture that directly operates on
3D point clouds of detected cell nuclei centroids. The experiments with
four wild-type zebrafish embryos render both approaches suitable for au-
tomatic staging with average deviations of 21− 34 minutes. Moreover, a
proof-of-concept evaluation based on simulated 3D+t point cloud data
sets shows that average deviations of less than 7 minutes are possible.

Keywords: Convolutional Neural Networks · PointNet · Regression ·
Transfer Learning · Developmental Biology · Simulating Embryogenesis.

1 Introduction

Embryonic development is characterized by a multitude of synchronized events,
cell shape changes and large-scale tissue rearrangements that are crucial steps
in the successful formation of a new organism [10]. To be able to compare these
developmental events among different wild-type individuals, different mutants
or upon exposure to certain chemicals, it is highly important to temporally
synchronize acquired data sets, such that corresponding developmental stages
are compared to one another [3, 6]. While the temporal synchronization is typi-
cally easy in small 2D screens, it becomes already a tedious undertaking when
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Fig. 1. Maximum intensity projections of 3D light-sheet microscopy images of a ze-
brafish embryo imaged from 4.7 - 10 hpf that were used as the input for the CNN-based
stage predictions (top). Centroids of the fluorescently labeled cell nuclei were automat-
ically detected [20] and are visualized with a density-based color-code that measures
the relative number of neighbors in a fixed sphere neighborhood (bottom). A fixed
number of points sampled from the centroids of different time points directly serves as
input to the PointNet-based stage prediction. Scale bar: 100µm.

analyzing high-throughput screens consisting of thousands of repeats. Shifting
dimensions to 3D the challenge of reproducible temporal synchronization be-
comes even more difficult and finally almost impossible for a human observer
if the time domain is additionally considered. Current approaches to embryo
staging largely rely on human intervention with the risk of subjective bias and
might require specific labeling strategies or sophisticated visualization tools to
cope with large-scale time-resolved 3D data [13,16].

Under the assumption that development progresses equally in all embryos,
a rough temporal synchronization of the data sets can be obtained by mea-
suring the time between fertilization and image acquisition [17]. Moreover, a
visual staging can be performed after image acquisition by identifying certain
developmental characteristics of a single snapshot of a time series or after chem-
ical fixation of the embryo and by comparing it with a series of standardized
views that show the characteristic development of a wild-type specimen at a
standardized temperature [8]. In early phases of development, synchronized cell
divisions regularly double the cell count and can be used to reliably align early
time points [4,9]. Villoutreix et al. use measured cell counts over time to specify
an affine transformation on the temporal domain, i.e., the time axis is scaled
such that the cell count curves of multiple embryos best overlap [22]. While cell
counts might be reliable in specimens like the nemathode C. elegans, where adult
individuals exhibit a largely identical number of cells, using the cell counts for
synchronization in more complex animal models becomes more and more am-
biguous. As development progresses, strong variation of total cell counts, cell
sizes, cell shape and tissue formation are observed even among wild-type em-
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bryos [5, 11]. If the number of individuals is limited and if later time points are
considered, a manual identification of characteristic anatomical landmarks can
be used to assign a specific developmental stage to selected frames [11, 12, 23].
With steadily increasing degrees of automation of experimental setups, it will be
impractical to perform the staging with the human in the loop and automated
approaches could thus help to further automate experimental protocols.

In this contribution, we analyzed two learning-based approaches for their suit-
ability to automate embryo staging in large-scale 3D+t microscopy experiments.
The methods comprise image-based convolutional neural networks (CNNs) as
well as a point cloud-based approach using the PointNet architecture [14]. Both
approaches were adapted for regression tasks and assessed under different hy-
perparameter and training conditions. We applied the methods to 2D maximum
intensity projections as well as to real and simulated 3D point clouds of cell
nuclei centroids (Fig. 1). Training data was extracted from terabyte-scale 3D+t
light-sheet microscopy images of four wild-type zebrafish embryos (D. rerio) that
ubiquitously expressed a green fluorescent protein (GFP) in their cell nuclei [9].

2 Automatic Embryo Staging as a Regression Problem

We analyzed two conceptually different approaches to automatically predict the
hours post fertilization (hpf), a common measure for staging zebrafish embryos,
either from 2D maximum intensity projection images or from 3D point clouds of
centroids of fluorescently labeled cell nuclei. To estimate the achievable staging
accuracy to be expected for training with a perfect ground truth, we created a
synthetic 3D+t point cloud data set by adapting the method described in [19].
We intentionally did not use cell counts for staging due to large inter-specimen
variations. Instead, the networks should learn to derive the stage solely from
the appearance in the projection (CNN-based pipelines) or the arrangement of
nuclei in space (PointNet-based pipeline).

2.1 CNN-based Embryo Staging on Downsampled Maximum
Intensity Projections

For the image-based approach we selected three established CNN architectures,
namely VGG-16, ResNet-18 and GoogLeNet [7,18,21]. The classification output
layers were replaced with a single regression node with a linear activation to
predict the stage of the current input in hpf. In addition to the relatively large
pretrained networks, we added a more shallow VGG-like network (VGG-Simple)
consisting of four blocks of convolutions followed by ReLU activation (3 × 3
kernels, stride 1, 32 layers in the first convolutional layer and doubling the depth
after each pooling operation), three max-pooling layers (2× 2 kernels, stride 2)
and two fully-connected layers (128 and 64 nodes, each followed by a dropout
layer with probability p = 0.2) that map to the final regression node (Fig. 2).
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Fig. 2. Regression approaches used for automatic embryo staging. Different CNNs are
applied to 2D maximum intensity projection images (top) and a PointNet [14] is applied
to 3D point clouds of detected cell nucleus centroids (bottom). The depicted regression
CNN architecture (top) is referred to as VGG-Simple in the remainder of the paper.

2.2 Regression PointNet for Automatic Embryo Staging

To perform the automatic staging on 3D point clouds, we equipped the original
PointNet architecture by Qi et al. [14] with a regression layer as the target in-
stead of classification scores (Fig. 2, bottom). In brief, the PointNet architecture
processes input points separately by first putting them through learnable input
and feature transformation modules (3× 3 and 64× 64) that are connected via
a point-wise multilayer perceptrons with shared weights. This step is intended
to orient the point cloud consistently and thus to obtain invariance with respect
to input transformations. The transformed points are then fed through another
set of multilayer perceptrons with shared weights (64, 128 and 1024 nodes in the
hidden layers), a max-pooling operation that serves as a symmetric function to
compensate for permutations of the input points and a final fully-connected mul-
tilayer perceptron with 512 and 256 hidden layers that map to k output scores
in the original classification PointNet. To use PointNet for regression, we change
the final fully-connected layer to map to a single output neuron with linear ac-
tivation and use a mean squared error loss to regress to the target measure in
hpf. As the PointNet operates only on a subset of the input points during each
forward pass, we use an ensemble average of the predictions over 25 runs with
randomly selected input points for the final output.

2.3 Synthetic Embryo Data Set to Identify the Possible Accuracy

As the temporal comparability of real embryos may be biased by the man-
ual synchronization or due to inter-experiment variability caused by deviations
from the assumption of the linear development, we decided to add an additional
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validation experiment using synthetic 3D+t point clouds that mimic embry-
onic development. As described in [19], virtual agents can be placed on tracked
cell centroids of a real embryo, even in the presence incomplete or erroneous
tracks. However, we simplified the approach described in [19], while still visu-
ally improving the realism of the simulations. The major difference is that the
simulation is performed backwards in time, i.e., we start at the last time point
and initialize the simulation with a fraction of p ∈ [0, 1] randomly selected real
positions at this time point. Each sampled position xi was additionally modified
by adding a small displacement in a random direction at most half the distance
to its spatially nearest neighbor. So even if the same real cells were sampled,
the additional randomization of each location ensures that no identical positions
are present when creating multiple simulations of a single embryo. We skip the
repulsive and nearest neighbor attraction forces and only rely on the movement
directions of the closest neighbors in the real data set to update the positions of
the simulated objects. The total displacement vector ∆xtot

i for each simulated
object i at location xi thus simplifies to the average of the backward directions
−dj of its K spatially nearest neighbors j ∈ NK

knn(xi) within the real embryo:

∆xtot
i = ∆xdir

i =
1

K

∑
j∈NK

knn(xi)

−dj . (1)

As we start with the maximum number of objects and perform a time-reversed
simulation, we need to incorporate merge events rather than cell division events.
The number of merges Nmerge

k required in time point k is defined as the difference
of the objects currently present in the simulation N sim

k and the target number

of objects determined by the desired fraction of the real objects p ·N embryo
k :

Nmerge
k = max

(
0, N sim

k − p ·N embryo
k

)
. (2)

To determine which of the current objects should be merged to preserve the den-
sity distribution of the real embryo even in the case of fewer simulated objects,
we adapted the relative density difference measure from [19] and compute it for
each object i at time point k:

ρdiff
ik =

ρsim
ik

N sim
k

−
ρembryo
ik

N embryo
k

. (3)

The density ρik was defined as the number of neighbors present in a sphere with
a fixed radius of 50 µm centered at each object in the real or the simulated
point cloud, respectively. Although the simulation is not sensitive to the exact
value selected for the neighborhood radius, it should be large enough that even
in sparse regions of the simulation at least a few neighbors are present. More-
over, it is important to use the same radius for both the real and the simulated
embryo, to ensure comparable density differences after normalizing the number
of neighbors with the number of total objects at each time point. We select the
Nmerge

k simulated cells at time point k with the maximum relative density differ-
ence ρdiff

ik and combine each of these objects with its spatially closest neighbor at
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time point k to a single fused object at time point k− 1. As the PointNet-based
stage identification is most relevant for practical applications, we did not simu-
late artificial image data and only focused on a 3D+t point cloud-based scenario
for the identification of the achievable accuracy for a perfect ground truth.

3 Experiments

3.1 Data Acquisition and Training Data Generation

Raw image data was acquired using a custom-made light-sheet microscope as
described in [9]. Experiments considered in this contribution comprise four wild-
type zebrafish embryos expressing a transgenic H2A-GFP fusion protein in their
cell nuclei that were imaged from about 2.5 to 16 hpf and were performed in
accordance with the German animal protection regulations, approved by the
Regierungspräsidium Karlsruhe, Germany (Az. 35-9185.64) [9]. A single experi-
ment acquired with this technique accumulates about 10 terabytes of raw image
data, i.e., the total amount of data analyzed was on the order of 40 TB. Cell
nuclei of all four embryos were automatically segmented using the TWANG
segmentation algorithm [2,20] and we aligned the 3D+t point clouds in a consis-
tent orientation with the prospective dorsal side pointing to the positive x-axis,
the anteroposterior axis oriented along the y-axis [9, 16]. A temporal window of
4.7 − 10 hpf was selected by manually identifying the 10 hpf stages as a syn-
chronization time point and assuming constant development prior to that stage.
The time interval was selected, such that the segmentation worked reliably with
sufficiently strong fluorescent signal in the early time points and the ability to
still resolve single cell nuclei in high density areas in later frames [16]. Stage
identification was performed on 3D+t point clouds visualized in KitWare’s Par-
aView [1]. The manual stage identification required several hours of interactive
data visualization and analysis, which could largely benefit from automation.

For the image-based CNNs, we computed 2D maximum intensity projections
for all data sets and all time points along the axial direction. Intensity values
of all frames were scaled to the 8 bit range and contrast adjusted such that
0.3% of the pixels at the lower and the upper end of the intensity range were
saturated. For networks pretrained on the ImageNet database, we scaled the
single channel 8 bit images to 224 × 224 pixels with three redundant channels.
We ended up with 370 frames for each embryo spanning a duration of 4.7 − 10
hpf, i.e., 1480 images for all embryos in total. The PointNet was trained on 3D
centroids of detected nuclei, which were extracted from the same four embryos
as for the image-based experiments (between 4160 to 19794 per data set) [16].
In addition to the real data sets, we created four simulations using p = 0.75, i.e.,
75% of the real detections and movements of a single embryo but with different
random initializations, such that we obtained the same overall shape and the
same density distribution over time. The target hpf values were identical to the
ones we used for the real embryo spanning from 4.7 − 10 hpf over 370 frames.
The achievable performance is only assessed using the regression PointNet, as
this is the practically most relevant approach and also allows to assess the 3D
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shape of the embryo irrespective of its orientation in the sample chamber rather
than a 2D projection with potential occlusions.

3.2 Implementation and Training Details

The CNN-based approaches and pretrained networks were implemented in MAT-
LAB using the Deep Learning Toolbox. We used the ADAM optimizer, tried dif-
ferent mini-batch sizes of 8, 16, 32 and 64 and trained for 100 epochs (sufficient
for all models to converge). Optionally, we used data augmentation including
reflection, scaling (0.9− 1.0), random rotations (0− 180◦) and random transla-
tions (±5 px). In addition to training the networks from scratch, we investigated
the performance of fixing the pretrained weights of the networks at different
layers and only fine-tuned the deeper layers to the new task. For VGG-16, we
tested all positions prior to the max-pooling layers (5 possibilities), for ResNet-
18, all positions before and after pairs of ResNet modules (5 possibilities) and for
GoogLeNet, all locations between Inception modules (9 possibilities). The Point-
Net was implemented using TensorFlow by modifying the original repository [14].
Training was performed using the ADAM optimizer and we randomly sampled
4096 centroids of each time point at each training iteration as the fixed-size input
to the PointNet. We consistently obtained better results when disabling dropout
and batch normalization during training and thus only report these results. For
augmentation, random rotations around the origin were applied to all points and
point jittering was used to apply small random displacements to each of the 3D
input points. Training was performed with 4-fold cross-validation using three
embryos for training and one embryo for testing in each fold, respectively. Sim-
ulated embryos were created using MATLAB and processed like the real data.
Reported average values and standard deviations were computed on all folds.

4 Results and Discussion

The results of the best combination of architecture, augmentation and hyper-
parameters are summarized in Tab. 1 and Fig. 3. The smallest mean deviation
from the ground truth was obtained with the PointNet approach with an average
deviation of 0.35±0.24 hours (mean ± std. dev.). ResNet-18 was the best scoring
CNN-based approach with an average deviation of 0.45±0.30 hours with a mini-
batch size of 32 and with freezing the pretrained weights of the first four ResNet
modules. These results were closely followed by the GoogLeNet trained from
scratch with enabled data augmentation and a mini-batch size of 8 (0.50± 0.37
hours) and the VGG-Simple architecture (0.51± 0.40 hours) with augmentation
enabled and a mini-batch size of 16. VGG-16 yielded the poorest performance
in all investigated settings and the best results reported in Tab. 1 (0.57 ± 0.41
hours) were obtained using a fine-tuning approach with keeping the weights up
to the third convolutional block fixed, with enabled data augmentation and a
mini-batch size of 8. The 138 million parameters of VGG-16 combined with a
limited amount of training images showed a tendency to overfit despite using
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Fig. 3. Four-fold cross-validation results for the CNN-based predictions on maximum
intensity projections (VGG-Simple, VGG-16, ResNet-18 and GoogLeNet, respectively)
and the results of the regression PointNets (right). Ground truth is depicted in green
and the mean ± std. dev. of the four cross-validation runs are depicted with black
lines and gray shaded areas. Note that the PointNet (Sim.) approach was trained on
synthetic data obtained from a single embryo to approximate the achievable accuracy.

data augmentation and dropout regularization. However, with fixed pretrained
weights and enabled data augmentation the qualitative trend did not change
and the network even failed to learn the training data properly, which is prob-
ably due to the differences of the ImageNet data from fluorescence microscopy
images. The same ranking was obtained when considering the root mean square
deviation (RMSD, Tab. 1). To approximate the potentially possible accuracy, we
assessed the performance of the PointNet on simulated data, reaching an average
deviation of 0.11± 0.09 hours (6.6± 5.4 min). Both in the early as well as in the
late frames the major differences originate from cell density rather than shape,
which is not yet considered by the models. Thus, the best performance was con-
sistently achieved in intermediate frames (≈ 50 – 300) which are characterized
by large-scale tissue rearrangements during the gastrulation phase.

The performance of the image-based projection approach directly depends
on the orientation of the embryo during image acquisition. On the contrary, the
point cloud-based method is essentially independent of the initial orientation
and randomized orientation of the point clouds are explicitly used as augmenta-
tion strategy during the training to further improve the invariance of the stage
prediction with respect to the spatial orientation. The staging can thus be per-
formed even without a tedious manual alignment of different experiments or
the use of registration approaches, which might be required for the image-based
approach. Robustness with respect to specimen orientation could be achieved
for the image-based CNN approach by using 3D CNNs that are directly applied
on downsampled raw image stacks [15]. However, this would require extensive
preprocessing of the terabyte-scale data sets like multi-view fusion and down-
sampling, which would thus dramatically increase the required processing time.
Currently, the time required for predicting the stage of a single time point is on
the order of milliseconds for all investigated approaches.

The general average trends obtained by PointNet, ResNet-18 and GoogLeNet
nicely resemble the ground truth and are arguably the most promising candi-
dates among the presented methods. While an average deviation of about 21−30
minutes from the real developmental time can be readily used for a global stag-
ing and temporal alignment of long-term experiments, applications involving
rapid tissue changes that potentially can happen in a matter of a few minutes
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Table 1. Staging accuracy of the different methods with top-scoring methods high-
lighted in bold-face letters. Last row: results obtained on the simulated data sets.

Method Modality Mean Dev. ± Std. Dev. (h) RMSD (h)

VGG-Simple 2D Images 0.51 ± 0.40 0.65
VGG-16 [18] 2D Images 0.57 ± 0.41 0.70
ResNet-18 [7] 2D Images 0.45 ± 0.30 0.54
GoogLeNet [21] 2D Images 0.50 ± 0.37 0.62
PointNet [14] 3D Point Clouds 0.35 ± 0.24 0.42

PointNet [14] 3D Point Clouds (Sim.) 0.11 ± 0.09 0.14

might demand for a higher accuracy. However, as the experiments with simu-
lated data shows, given sufficiently accurate ground truth data an accuracy of
less than 7 minutes becomes possible. Moreover, we also expect a higher vari-
ability of the images in phases of rapid tissue changes that could potentially
improve the separability. We consider the presented methods as a first proof-
of-concept for automatic embryo staging in 3D+t experiments showcasing two
conceptually different approaches. To compensate the lack of training data, we
used several data augmentation strategies including various image transforma-
tions, point jittering and random rotations of the entire data set. However, data
augmentation in the image-space did not consistently improve the results. As a
straightforward extension, we could simply enlarge the training set by additional
experiments or pre-train the real networks on realistic simulations as the ones
presented in Sec. 2.3. Moreover, the data sets we used for demonstration were
manually synchronized and assumed constant development of the embryo prior
to the synchronization time point, with a potential subjective bias. To obtain
a more objective ground truth calibration experiments would be required, e.g.,
by imaging multiple channels of reporter genes that are known to be expressed
within a distinct time window. Finally, an automatic spatial registration of the
temporally aligned data sets will be the next logical step to eventually be able
to automatically register multiple data sets in space and time.
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