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Abstract

Cochlear implants (CIs) restore hearing using an array of electrodes implanted in the cochlea to 

directly stimulate auditory nerve fibers (ANFs). Hearing outcomes with CIs are dependent on the 

health of the ANFs. In this research, we developed an approach to estimate the health of ANFs 

using patient-customized, image-based computational models of CI stimulation. Our stimulation 

models build on a previous model-based solution to estimate the intra-cochlear electric field (EF) 

created by the CI. Herein, we propose to use the estimated EF to drive ANF models representing 

75 nerve bundles along the length of the cochlea. We propose a method to detect the neural health 

of the ANF models by optimizing neural health parameters to minimize the sum of squared 

differences between simulated and the physiological measurements available via patients’ CIs. The 

resulting health parameters provide an estimate of the health of ANF bundles. Experiments with 8 

subjects show promising model prediction accuracy, with excellent agreement between neural 

stimulation responses that are clinically measured and those that are predicted by our parameter 

optimized models. These results suggest our modeling approach may provide an accurate 

estimation of ANF health for CI users.
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1 Introduction

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-

based hearing loss. In normal hearing, sound waves induce pressure oscillations in the 

cochlear fluids, which in turn initiate a traveling wave of displacement along the basilar 

membrane (BM). This membrane divides the cochlea along its length and produces maximal 

response to sounds at different frequencies [1]. Because motion of BM is then sensed by hair 

cells which are attached to the BM, these sensory cells are fine-tuned to respond to different 

frequencies of the received sounds. The hair cells further pass signals to auditory nerve 

fibers (ANFs) by releasing chemical transmitters. Finally, the electrical stimulation is 

propagated along the ANFs to the auditory cortex allowing the brain to sense and process the 

sounds.
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For patients suffering sensorineural hearing loss, which is principally caused by damage or 

destruction of the hair cells, direct stimulation of the auditory nerve using a CI is possible if 

ANFs are intact [2]. A CI replaces the hair cells with an externally worn signal processor 

that decomposes the incoming sound into signals sent to an electrode array that is surgically 

implanted into the cochlea (see Fig. 1a). Electrode arrays have up to 22 contacts depending 

on the manufacturer, dividing the available ANFs to, at most, 22 frequency bands or 

stimulation areas when using monopolar stimulation. Studies have shown that hearing 

outcomes with CIs are dependent on several factors including how healthy the ANFs are 

[14]. After surgery, CI recipients undergo many programming sessions with an audiologist 

who adjusts the settings for every single electrode to improve overall hearing performance. 

However, lacking objective information about ANF health and more generally about what 

settings will lead to better performance, a trial and error procedure is implemented. As 

weeks of experience with given settings are needed to indicate long-term outcome with those 

settings, this process can be frustratingly long and lead to suboptimal outcomes.

Our group has been developing image-guided CI programming techniques (IGCIP) in order 

to provide objective information that can assist audiologists with programming [3–5]. 

Although IGCIP has led to better hearing outcomes in experiments [4, 5], neural stimulation 

patterns of the electrodes are estimated in a coarse manner using only the distance from each 

electrode to the neural activation sites in our current implementation. So, it is possible that 

the method could be improved with a better estimate of the electrodes’ neural activation 

patterns with a physics-based model. To achieve that, we developed patient-specific models 

of the electrically stimulated cochlea [6, 7] which allow us to estimate intra-cochlear electric 

fields (EF) created by the CI for individual patients. Building on those studies, in this study 

we propose to use these EF models as input to ANF activation models to predict neural 

activation caused by electrical stimulation with the CI. We also propose the first in vivo 
approach to estimate the health of individual ANFs for CI patients using these models.

In summary, herein we propose patient-customized, image-based computational models of 

ANF stimulation. We also present a validation study in which we verify the model accuracy 

by comparing its predictions to clinical neural response measurements. Our methods provide 

patient-specific estimation of the electro-neural interface in unprecedented detail and could 

enable novel programming strategies that significantly improve hearing outcomes with CIs.

2 Related Works

Several groups have proposed methods for predicting neural activation caused by electrical 

stimulation [11, 16, 17]. Most of these methods use physiologically-based active membrane 

nerve models driven by physics-based estimation of the voltage distribution within a given 

anatomical structure. However, these studies either lack the capacity to be applied in-vivo or 

only confine themselves to anatomical customization instead of constructing both 

anatomically and electrically customized models that take advantage of physiological 

measurements that are clinically available. It is possible that these models need to be fully 

customized in order to prove useful for clinical use. Thus, in this work we are proposing 

patient-customized, computational ANF stimulation models, which are not only coupled 

with our patient-specific electro-anatomical models (EAMs) to ensure electrical and 
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anatomy customization, but also estimate neural health status along the length of cochlea. 

Our models permit accurately simulating physiological measurements available via CIs.

Our ANF stimulation models are built on three critical components: the biological auditory 

nerve model proposed by Rattay et al. [11], the CT-based high-resolution EAM of the 

electrically stimulated cochlea [6, 7], and the auditory nerve fiber segmentation proposed by 

our group [9]. In the following subsections, we will introduce how these models help to 

describe auditory nerves from biological, electrical, and spatial features respectively. And in 

Sect. 3, we will illustrate our approach to combine these models and build our novel, health-

dependent ANF stimulation models based on them.

2.1 Biological Nerve Model

The model proposed in by Rattay et al. [11] introduce three major features that differs from 

other nerve models. First, they use compartment model which consists of several subunits 

with individual geometric and electric parameters as shown in Fig. 1b. Second, Ion channel 

dynamics are described by a modified Hodgkin-Huxley (HH) model, namely, ‘warmed’ HH 

(wHH) model. wHH includes sodium, potassium and leakage currents and has the following 

form:

dV
dt = − −gNam3ℎ V − V Na − gKn4 V − V K − gL V − V L + istimulus /c (1)

dm
dt = − αm + βm m + αm k (2)

dℎ
dt = − αℎ + βℎ ℎ + αℎ k (3)

dn
dt = − αn + βn n + αn k (4)

k = 3T − 6.3 (5)

V = V i − V e − V rest (6)

where V, Vi, Ve and Vrest are the membrane, internal, external and resting voltages, and 

VNa, VK, and VL are the sodium, potassium and leakage battery voltages, respectively. gNa, 

gK, gL are the maximum conductance and m, h, n are probabilities with which the maximum 

conductance is reduced with respect to measured gating data, for sodium, potassium, and 

leakage, respectively. istimulus is the current produced by electrode stimulation, and c is the 

membrane capacity. Finally, α and β are voltage dependent variables that were fitted from 

measured data, k is the temperature coefficient, and T is temperature in Celsius. With wHH, 

the gating processes are accelerated (m, h, n are multiplied by 12), which best fit to observed 

temporal behavior of human auditory nerves compared to the original HH model, and 
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leakage conductances are multiplied by the factor 10 to simulate 10-fold channel density. 

Also, the influence of membrane noise is also taken into account in their approach. These 

features allow the model to simulate the electrically excited auditory nerves in the human 

cochlea more accurately than models based on animals.

2.2 Electro-Anatomical Model and Auditory Nerve Fiber Segmentation

In a series of previous studies [6, 7], our group created CT-based high-resolution EAMs to 

determine the patient-specific EF caused by the current injected via CI electrodes. Briefly, 

this EAM estimates a volumetric map of the EF through the cochlea created by the CI. The 

EAM is customized for each patient by customizing a conductivity map so that estimated 

impedances between all combinations of the CI electrodes best match clinical measurements 

of these quantities (termed Electrical Field Imaging (EFI)). Then the EF can be found by 

solving Poisson’s equation for electrostatics, which is given by ∇ · J = −σ∇2Φ, where Φ is 

the EF, J is the electric current density and σ is the conductivity. We are able to define the 

current source and ground for the CI versus other nodes by manipulating the left-hand side 

of the equation. As it is discussed in [6], the tissue in this model was assumed to be purely 

resistive, thus the amount of current enters a node equals to the amount of current that leaves 

the same node. The finite difference method solution to it can be foud by solving AΦ = b ,

where A is a sparse matrix containing coefficients of the linear sum of currents equations, Φ
are the set of node voltages that are being determined and are concatenated into a vector, and 

b(i) equals to +1μA if the ith node is a current source and 0 otherwise. The nodes 

representing ground are eliminated from the system of linear equations, so the net current is 

not constrained for those nodes. This system of linear equations is then solved by using the 

bi-conjugate gradient method [6].

The EAMs are electrically customized by optimizing the tissue resistivity estimates to 

minimize the average error between simulated EFIs and measured EFIs. The resistivity 

values for different tissue classes, including electrolytic fluid, soft tissues, neural tissue, and 

bone, are bound to vary in a range of 50 to 150% of their default values, which are 300, 50, 

600, and 5000 Ωcm respectively. Figure 2 shows the EFI simulation of a customized EAM 

and a generic EAM which uses default electrical properties for 4 electrodes of the same 

subject, demonstrating much better agreement between simulated and measured EFI after 

customizing electrical properties.

To localize the ANFs, we use a semi-automatic segmentation technique proposed in [8]. 

That approach relies on prior knowledge of the morphology of the fibers to estimate their 

position. It treats the fiber localization problem as a path-finding problem [8]. Several points 

are automatically defined as landmarks using the segmentation of the cochlea. Paths 

representing 75 fiber bundles that are evenly spaced along the length of the cochlea are then 

constructed by graph search techniques that gives the shortest path connecting all the 

landmarks. Because the paths are computed independently and in close proximity, 

sometimes they overlap or cross. As a post-processing step, manual edits to some of the 

paths are required. Example results of this process are in Fig. 1a.
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3 Methods

We start the methods section with an overview of the proposed approach, followed by 

subsections providing more detail regarding novel components of the work. There are 

approximately 30,000 ANFs in a healthy human cochlea [12]. We represent them using 

auditory nerve bundles that are segmented along the length of the cochlea as shown in Fig. 

1a [11]. To reduce the computational cost of our approach, we represent only 75 distinct 

bundles, each represents potentially hundreds of fibers. Our proposed nerve bundle action 

potential model is PMHM + PUH (1 – M), where PM and PU are the action potential 

responses of single ANF cell biological nerve models (see Sect. 2.1) for a myelinated fiber 

and the degenerated, unmyelinated fiber model, respectively. H is the number of living fibers 

in the bundle that can be recruited for stimulation. M is the fraction, among those ANFs, of 

healthy versus degenerated ones. Thus, the bundle action potential is the superposition of the 

two fiber model action potential predictions scaled by the number of such fibers we estimate 

to be present in the bundle. We have designed an approach, described below, to determine 

patient customized values for these two parameters for each of the 75 distinct bundles.

The biological ANF model permits simulating action potentials (APs) created by ANFs as a 

result of the EF the ANF is subjected to. The EF sampled at discrete locations along the fiber 

bundle – each node of Ranvier (black nodes between myelinated segments in Fig. 1b) – is 

used to drive the ANF activation model. The EF generated by the CI electrodes can drive the 

ANF models and can be estimated using our CT-based high-resolution EAM of the 

electrically stimulated cochlea as described in Sect. 2.2.

Next, we will use our bundle model to simulate neural response measurements that can be 

clinically acquired. These measurements include recordings acquired using the CI electrodes 

of the combined AP signal that is created by the set of ANFs activated following a 

stimulation pulse created by the CI. Such measurements are called electrically evoked 

compound action potentials (eCAPs). Several eCAP-based functions can be clinically 

acquired. The most common are the amplitude growth function (AGF), which samples how 

the magnitude of recorded eCAPs (μV) grow as the current is increased for the stimulation 

pulse signal; and the spread of excitation (SOE) function, which measures the fraction of 

eCAP responses for two stimulating electrodes that are generated from the same ANFs [9, 

10]. Both AGFs and SOEs can be simulated using our models and clinically measured using 

the patient’s implant. While both AGF and SOE are rich with information about the electro-

neural interface and have been acquirable for CI patients for decades, these metrics are not 

routinely used for clinical programming because they have been difficult to interpret. Thus, 

the method we propose provides a unique opportunity to (1) estimate neural health by tuning 

model neural health parameters so that model predicted eCAP functions match clinically 

measured ones; and (2) provide a physical explanation for the AGF and SOE measurements. 

Both of these typically unknown quantities could significantly improve an audiologist’s 

ability to program the CI.

We tune neural health parameters for each ANF bundle so that simulated AGF functions for 

each electrode in the array best match the corresponding clinically measured ones. Finally, 

we conduct a validation study in which we evaluate our health prediction by simulating SOE 
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functions using the model with the estimated neural health parameters and compare the 

results to clinical measured SOE to demonstrate the predictive value of our proposed 

models. The following subsections detail each step of our approach.

3.1 Dataset

N = 8 patients who had undergone CI surgery were used to create neural health estimation 

models. All the patients underwent pre- and post-implantation CT imaging needed to 

localize the intra-cochlear position of the electrodes and to create the tissue classification 

maps for the EAM models. The three clinical electrophysiological measurements critical for 

tuning and evaluating our models (EFI, AGF, and SOE) were also collected for all 

electrodes, for all patients with institutional review board approval.

3.2 Nerve Model

For each nerve fiber model, we follow the approach of Rattay et al. as we described in Sect. 

2.1. We also used the same electrical and geometrical properties as Rattay did in his work 

[11]. The modeling is done using the NEURON simulation environment [15]. The overview 

of the auditory nerve fiber used in this study is shown in Fig. 1b. As shown in the figure, 

each nerve model consists of three subunits which are the peripheral axon, the soma and the 

central axon. The peripheral axon is located near hair cells in a human cochlea. They are 

myelinated when the fiber is healthy and fully functional. It is also common in patients with 

hearing loss that fibers where the peripheral axon has become unmyelinated exist and could 

have a weaker response to stimulation [14]. We define them as functional but ‘unhealthy’ 

ANFs. Then we can parameterize the health of each nerve bundle by varying the number of 

fibers, H, as well as the ratio of myelinated vs unmyelinated fibers, M, for each ANF bundle.

Our bundle model simulates bundle APs to the estimated EF generated by CI electrodes as 

previously discussed. Subsequently, eCAP measurements can be simulated in the model. To 

do this, each node of Ranvier for each bundle is treated as a current source, and the same 

finite difference method in Sect. 2.2 for estimating EF created by the CI is repurposed for 

estimating the EF created by the APs generated by all the bundles. This is done by defining 

bundle nodes as current sources corresponding to cross-membrane current. Thus, the result 

of each bundle model drives a new EAM to estimate the EF created by the ANFs in the 

cochlea. The value of the EF is then recorded at the site where the recording electrode is 

located. This process directly simulates the clinical eCAP measurement process.

In summary, the eCAP simulation can be divided into three steps: (1) for a given stimulating 

electrode, we calculate the EF using an EAM and record the resulting EF at the nodes of 

Ranvier for each nerve bundle; (2) we use those voltages as input to the neural activation 

models for both myelinated and unmyelinated nerves to compute our combined nerve bundle 

AP; and (3) we estimate the EF created by the bundle APs using another EAM, permitting 

simulated eCAP measurement from the position of recording electrode. In practice, in the 

final step an EAM can be created independently for each bundle and the compound response 

at the recording electrode is then given by
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simulated eCAP = Σi = 1
75

PM, iHiMi + PU, iHi 1 − Mi (8)

where PM,i and PU,i represent the value of the EF sampled at the recording electrode for the 

simulated eCAP of the myelinated and unmyelinated ANF model in the ith nerve bundle, 

respectively, and Hi and Mi, are the number of fibers and fraction of those fibers that are 

healthy for the ith nerve bundle.

3.3 Optimization Process

Spoendlin et al. [12] found that for a healthy human cochlea, the average number of fibers 

can vary between 500 fibers per millimeter (mm) to 1400 fiber per mm depending on the 

location within the cochlea. Given that a nerve bundle in our model can represent a region as 

wide as 0.4 mm along the length of cochlea, we have set the boundary values for number of 

functional nerve fibers to be between 0 (all unresponsive) and 550 (all responsive) and the 

healthy ratio or the myelination ratio from 0 (all responsive nerve fibers are damaged) to 1 

(all responsive nerve fibers are healthy).

Algorithm 1.

Estimate the patient specific neural health parameters

Input: PAGF = Patient AGF measurement

Variables: SAGF = Simulated AGF data, H = Number of nerve fibers within bundles, M = Myelination ratio of fibers 
within bundles

Output: HC = Fiber count assigned to each control point, MC = Myelination ratio assigned to each control point

Start: Assign threshold and maxlteration, randomly assign HC and MC

While Δ|error|> threshold and counter < maxIteration

 Interpolate H and M using HC and MC

Calculate SAGF using H and M

For each electrode i

 errorAGF [i] = mean(abs(PAGF [i] - SAGF [i]))

error = mean(errorAGF)

 Optimize HC and MC using a constrained nonlinear search based on Nelder-Mead simplex

Instead of determining values for Hi and Mi for each of the 75 nerve bundles independendy, 

a set of control points are used to enforce spatial consistency in parameter values. We define 

n + 1 control points along the length of cochlea, where n is the total number of active 

electrodes. The control points are positioned to bracket each electrode. The parameters at 

those control points were randomly initialized with Hi between 0 to 550 and Mi from 0 to 1. 

The parameters for each nerve bundle are then linearly interpolated along the length of the 

cochlea using the control points.

We use the bounded Nelder-Mead simplex optimization algorithm [13] to optimize values at 

the control points. The cost function is calculated as the mean absolute difference between 

the simulated and measured AGF values for each electrode. Starting from a random 

initialization at each control point, our algorithm will iteratively calculate the parameters of 
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every nerve bundle by interpolating control point values, simulate AGF using those 

parameters to evaluate the cost function discussed above, and determine new control point 

parameters using the Nelder-Mead simplex method until a maximum iteration number is 

reached or the change in error falls below the termination threshold (0.1 μV). Algorithm 

pseudocode is presented in Algorithm 1.

In our implementation, AGF values that were less than 35 μV were not included in the 

optimization process because low AGF values tend to be below the noise floor and are 

usually excluded from clinical analyses. During our experiments, Algorithm 1 is executed 

from 250 different random initializations for each patient model. The final fiber count and 

healthy ratio for every nerve bundle are determined as the median values across the 10 

optimization runs that resulted in the lowest average error. This procedure diminishes the 

likelihood of choosing sub-optimal parameters that are local minima.

4 Results

The average absolute differences between the simulated and measured AGF and SOE values 

for fully customized EAMs are shown on the left side of Table 1. The average absolute 

difference between the simulated and the measured AGF values could be interpreted as the 

training error. Mann-Whitney U tests reveal significant improvement in AGF errors after 

training (p < 0.01). The error between the simulated and the measured SOE can be 

interpreted as the testing error since SOE was not used to optimize neural health parameters. 

Further, SOE is likely more sensitive to neural health than AGF because it is much more 

dependent on the spatial distribution of ANFs that contribute to the neural responses. The 

average SOE error across all patients after optimizing neural health parameters using our 

proposed method is 39.5 μV.

In Fig. 3, we plot the simulation and clinical result of both AGF and SOE for subject 1. Both 

of the quantitative and qualitative comparisons show excellent agreement between neural 

stimulation responses that are clinically measured and those that are predicted by our 

parameter optimized models. We further compare the difference between neural health 

estimation using our fully customized models vs. generic models, where default electrical 

properties are used, for the first 5 subjects in the right side of Table 1. The AGF error 

(training error) resulting from the generic and electrically customized models is similar 

while the testing error with fully customized models is much smaller than generic models. A 

one sided Mann-Whitney U test reveals significantly better (p < 0.05) testing error with the 

fully customized model compared to the generic models. Example plots demonstrating the 

superiority of SOE simulations using customized for one subject are shown in Fig. 4. These 

results imply our patient-specific EAMs are critical, not only for EFI simulation, but also for 

accurate neural health estimation. An example neural health estimation result is shown in 

Fig. 1a, where the neural health color-codes are a combined function of both health 

parameters equal to H (0.5 + M). Varying health of several regions of nerves was identified 

by the proposed method in order for prediction to match measured AGF.
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5 Conclusion

In this research, we developed an approach to estimate the health of ANFs using patient-

customized, image-based computational models of CI stimulation. The resulting health 

parameters provide an estimate of the health of ANF bundles. It is impossible to directly 

measure the number of healthy ANFs in vivo to validate our estimates, however experiments 

with 8 subjects show promising model prediction accuracy, with excellent agreement 

between neural stimulation responses that are clinically measured and those that are 

predicted by our parameter optimized models. These results suggest our modelling approach 

may provide accurate estimation of ANF health for CI users. With the current IGCIP 

approach, assumptions are made about electrical current spread to estimate which fiber 

groups are activated based on their distance to the electrode. Our estimation on the health of 

ANFs may improve our estimation of neural stimulation patterns and lead to highly 

customized IGCIP strategies for patients. Our future work includes evaluating effectiveness 

of novel patient-customized programming strategies that use these models. Further, our 

methods could provide an unprecedented window into the health of the inner ear, opening 

the door for studying population variability and intra-subject neural health dynamics.
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Fig. 1. 
Overview of the ANF models. (a) shows the spatial distribution of ANF bundles colored 

with a nerve health estimate. (b) Shows the ANF stimulation model created for each fiber 

bundle.
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Fig. 2. 
EFI simulation of a customized EAM and a generic EAM
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Fig. 3. 
(a) Comparison between measured and simulated AGF data. (b) Compatison between 

measured and simulated SOE data
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Fig. 4. 
SOE testing error for patient-customized versus generic models for Subject 4.
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Table 1.

Average mean absolute difference between simulated and measured AGF and SOE.

Subject # Fully customized models Generic models

AGF error – before 
optimiz. health (μV)

AGF error – after 
optimiz. health (μV)

SOE error-testing 
error (μV)

AGF error – after 
optimiz. health (μV)

SOE error-testing 
error (μV)

1 58 16 31 22 53

2 187 19 32 48 49

3 299 39 37 28 76

4 66 37 44 39 102

5 131 11 29 19 56

6 97 8 21 15 36

7 62 17 48 – –

8 141 26 59 – –

Average 134 21.6 39.5 28.5 62.0
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