Skip to main content

On Burial Depth of Underground Antenna in Soil Horizons for Decision Agriculture

  • Conference paper
  • First Online:
Book cover Internet of Things - ICIOT 2020 (ICIOT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12405))

Included in the following conference series:

Abstract

Decision agriculture is the practice of accurately capturing the changing parameters of the soil including water infiltration and retention, nutrients supply, acidity, and other time changing phenomena by using the modern technologies. Using decision agriculture, fields can be irrigated more efficiently hence conserving water resources and increasing productivity. The Internet of Underground Things (IOUT) is being used to monitor the soil for smart irrigation. Moreover, the communication in wireless underground sensor networks is affected by soil characteristics such as soil texture, volumetric water content (VWC) and bulk density. These soil characteristics vary with soil type and soil horizons within a field. In this paper, we have investigated the effects of these characteristics by considering Holdrege soil series and homogeneous soil. It is shown that the consideration of soil characteristics of different soil horizons leads to 6% improved communication in wireless underground communications for smart agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Sun, Z., Vuran, M.C.: Signal propagation techniques for wireless underground communication networks. Phys. Commun. J. 2(3), 167–183 (2009)

    Article  Google Scholar 

  2. Boyle, K., Yuan, Y., Ligthart, L.: Analysis of mobile phone antenna impedance variations with user proximity. IEEE Trans. Antennas Propag. 55(2), 364–372 (2007)

    Article  Google Scholar 

  3. Dissanayake, T., Esselle, K., Yuce, M.: Dielectric loaded impedance matching for wideband implanted antennas. IEEE Trans. Microw. Theory Tech. 57(10), 2480–2487 (2009)

    Article  Google Scholar 

  4. Do, T., Gan, L., Nguyen, N., Tran, T.: Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012)

    Article  MathSciNet  Google Scholar 

  5. Dobson, M., Ulaby, F., Hallikainen, M., El-Rayes, M.: Microwave dielectric behavior of wet soil–Part II: dielectric mixing models. IEEE Trans. Geosci. Remote. Sens. GE-23(1), 35–46 (1985)

    Google Scholar 

  6. Dong, X., Vuran, M.C.: A channel model for wireless underground sensor networks using lateral waves. In: Proceedings of IEEE Globecom 2011, Houston, TX, December 2011

    Google Scholar 

  7. Dong, X., Vuran, M.: Impacts of soil moisture on cognitive radio underground networks. In: 2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 222–227, July 2013

    Google Scholar 

  8. Dong, X., Vuran, M.C., Irmak, S.: Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Netw. 11, 1975–1987 (2012)

    Article  Google Scholar 

  9. Gosalia, K., Humayun, M., Lazzi, G.: Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis. IEEE Trans. Antennas Propag. 53(8), 2365–2373 (2005)

    Article  Google Scholar 

  10. Hunt, K., Niemeier, J., Kruger, A.: RF communications in underwater wireless sensor networks. In: IEEE International Conference on Electro/Information Technology (EIT), Normal, IL, May 2010

    Google Scholar 

  11. Iizuka, K.: An experimental investigation on the behavior of the dipole antenna near the interface between the conducting medium and free space. IEEE Trans. Antennas Propag. 12(1), 27–35 (1964)

    Article  Google Scholar 

  12. Johnk, C.T.: Engineering Electromagnetic Fields and Waves, 2nd edn. Wiley, Hoboken (1988)

    Google Scholar 

  13. Johnson, R.C. (ed.): Antenna Engineering Handbook, 3rd edn. McGraw-Hill Inc., New York (1993)

    Google Scholar 

  14. King, R.W.P., Smith, G.S.: Antennas in Matter. The MIT Press, Cambridge (1981)

    Google Scholar 

  15. Konda, A., et al.: Soft microreactors for the deposition of conductive metallic traces on planar, embossed, and curved surfaces. Adv. Funct. Mater. 28(40), 1803020. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201803020

  16. Peplinski, N., Ulaby, F., Dobson, M.: Dielectric properties of soil in the 0.3-1.3 GHz range. IEEE Trans. Geosci. Remote. Sens. 33(3), 803–807 (1995)

    Google Scholar 

  17. Proakis, J., Salehi, M.: Digital Communications, 5th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  18. Ritsema, C.J., Kuipers, H., Kleiboer, L., Elsen, E., Oostindie, K., Wesseling, J.G., Wolthuis, J., Havinga, P.: A new wireless underground network system for continuous monitoring of soil water contents. Water Resour. Res. J. 45, 1–9 (2009)

    Article  Google Scholar 

  19. Salam, A., Vuran, M.C., Dong, X., Argyropoulos, C., Irmak, S.: A theoretical model of underground dipole antennas for communications in internet of underground things. IEEE Trans. Antennas Propag. 67(6), 3996–4009 (2019)

    Article  Google Scholar 

  20. Salam, A., Vuran, M.C.: Impacts of soil type and moisture on the capacity of multi-carrier modulation in internet of underground things. In: Proceedings of the 25th ICCCN 2016, Waikoloa, Hawaii, USA, August 2016

    Google Scholar 

  21. Salam, A.: Pulses in the sand: long range and high data rate communication techniques for next generation wireless underground networks. ETD collection for University of Nebraska - Lincoln (AAI10826112) (2018). http://digitalcommons.unl.edu/dissertations/AAI10826112

  22. Salam, A.: A comparison of path loss variations in soil using planar and dipole antennas. In: 2019 IEEE International Symposium on Antennas and Propagation. IEEE, July 2019

    Google Scholar 

  23. Salam, A.: Design of subsurface phased array antennas for digital agriculture applications. In: Proceedings of the 2019 IEEE International Symposium on Phased Array Systems and Technology (IEEE Array 2019), Waltham, MA, USA, October 2019

    Google Scholar 

  24. Salam, A.: A path loss model for through the soil wireless communications in digital agriculture. In: 2019 IEEE International Symposium on Antennas and Propagation. IEEE, July 2019

    Google Scholar 

  25. Salam, A.: Sensor-free underground soil sensing. In: ASA, CSSA and SSSA International Annual Meetings. ASA-CSSA-SSSA (2019)

    Google Scholar 

  26. Salam, A.: Subsurface MIMO: a beamforming design in internet of underground things for digital agriculture applications. J. Sens. Actuator Netw. 8(3) (2019). https://www.mdpi.com/2224-2708/8/3/41

  27. Salam, A.: Underground environment aware MIMO design using transmit and receive beamforming in internet of underground things. In: Issarny, V., Palanisamy, B., Zhang, L.-J. (eds.) ICIOT 2019. LNCS, vol. 11519, pp. 1–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23357-0_1

    Chapter  Google Scholar 

  28. Salam, A.: An underground radio wave propagation prediction model for digital agriculture. Information 10(4) (2019). http://www.mdpi.com/2078-2489/10/4/147

  29. Salam, A.: Underground soil sensing using subsurface radio wave propagation. In: 5th Global Workshop on Proximal Soil Sensing. COLUMBIA, MO, May 2019

    Google Scholar 

  30. Salam, A.: Internet of things for environmental sustainability and climate change. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 33–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_2

    Chapter  Google Scholar 

  31. Salam, A.: Internet of things for sustainability: perspectives in privacy, cybersecurity, and future trends. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 299–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_10

    Chapter  Google Scholar 

  32. Salam, A.: Internet of Things for Sustainable Community Development, 1st edn. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2

    Book  Google Scholar 

  33. Salam, A.: Internet of things for sustainable community development: introduction and overview. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 1–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_1

    Chapter  Google Scholar 

  34. Salam, A.: Internet of things for sustainable forestry. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 147–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_5

    Chapter  Google Scholar 

  35. Salam, A.: Internet of things for sustainable human health. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 217–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_7

    Chapter  Google Scholar 

  36. Salam, A.: Internet of things for sustainable mining. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 243–271. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_8

    Chapter  Google Scholar 

  37. Salam, A.: Internet of things for water sustainability. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 113–145. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_4

    Chapter  Google Scholar 

  38. Salam, A.: Internet of things in agricultural innovation and security. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 71–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_3

    Chapter  Google Scholar 

  39. Salam, A.: Internet of things in sustainable energy systems. In: Salam, A.A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 183–216. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_6

    Chapter  Google Scholar 

  40. Salam, A.: Internet of things in water management and treatment. In: Salam, A. (ed.) Internet of Things for Sustainable Community Development. IT, pp. 273–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35291-2_9

    Chapter  Google Scholar 

  41. Salam, A.: Wireless underground communications in sewer and stormwater overflow monitoring: radio waves through soil and asphalt medium. Information 11(2), 98 (2020)

    Article  Google Scholar 

  42. Salam, A., et al.: The future of emerging IoT paradigms: architectures and technologies (2019)

    Google Scholar 

  43. Salam, A., Karabiyik, U.: A cooperative overlay approach at the physical layer of cognitive radio for digital agriculture. In: Third International Balkan Conference on Communications and Networking 2019 (BalkanCom 2019), Skopje, Macedonia, the former Yugoslav Republic of, June 2019

    Google Scholar 

  44. Salam, A., Shah, S.: Internet of things in smart agriculture: enabling technologies. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (WF-IoT 2019), Limerick, Ireland, April 2019

    Google Scholar 

  45. Salam, A., Vuran, M.C.: EM-based wireless underground sensor networks. In: Pamukcu, S., Cheng, L. (eds.) Underground Sensing, pp. 247–285. Academic Press, Cambridge (2018)

    Chapter  Google Scholar 

  46. Salam, A., Vuran, M.C., Irmak, S.: Di-sense: in situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Comput. Netw. 151, 31–41 (2019). http://www.sciencedirect.com/science/article/pii/S1389128618303141

  47. Salam, A., Vuran, M.C.: Smart underground antenna arrays: a soil moisture adaptive beamforming approach. In: Proceedings of the IEEE INFOCOM 2017, Atlanta, USA, May 2017

    Google Scholar 

  48. Salam, A., Vuran, M.C.: Wireless underground channel diversity reception with multiple antennas for internet of underground things. In: Proceedings of the IEEE ICC 2017, Paris, France, May 2017

    Google Scholar 

  49. Salam, A., Vuran, M.C., Irmak, S.: Pulses in the sand: Impulse response analysis of wireless underground channel. In: The 35th Annual IEEE International Conference on Computer Communications (INFOCOM 2016), San Francisco, USA, April 2016

    Google Scholar 

  50. Salam, A., Vuran, M.C., Irmak, S.: Towards internet of underground things in smart lighting: a statistical model of wireless underground channel. In: Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control (IEEE ICNSC), Calabria, Italy, May 2017

    Google Scholar 

  51. Silva, A.R., Vuran, M.C.: Empirical evaluation of wireless underground-to-underground communication in wireless underground sensor networks. In: Proceedings of IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2009), pp. 231–244, Marina del Rey, CA, June 2009

    Google Scholar 

  52. Silva, A.R., Vuran, M.C.: (CPS)\(^2\): integration of center pivot systems with wireless underground sensor networks for autonomous precision agriculture. In: Proceedings of ACM/IEEE International Conference on Cyber-Physical Systems, Stockholm, Sweden, pp. 79–88, April 2010

    Google Scholar 

  53. Temel, S., Vuran, M.C., Lunar, M.M., Zhao, Z., Salam, A., Faller, R.K., Stolle, C.: Vehicle-to-barrier communication during real-world vehicle crash tests. Comput. Commun. 127, 172–186 (2018). http://www.sciencedirect.com/science/article/pii/S0140366417305224

  54. Tiusanen, M.J.: Wireless Soil Scout prototype radio signal reception compared to the attenuation model. Precis. Agric. 10(5), 372–381 (2008)

    Article  Google Scholar 

  55. Toftgard, J., Hornsleth, S., Andersen, J.: Effects on portable antennas of the presence of a person. IEEE Trans. Antennas Propag. 41(6), 739–746 (1993)

    Article  Google Scholar 

  56. UNL Soil Website. http://snr.unl.edu/data/publications/HoldregeSoil.asp#sand. Accessed Jan 2020

  57. USDA Website. https://soilseries.sc.egov.usda.gov/OSD_Docs/H/HOLDREGE.html. Accessed Jan 2020

  58. Vuran, M.C., Akyildiz, I.F.: Channel model and analysis for wireless underground sensor networks in soil medium. Phys. Commun. 3(4), 245–254 (2010)

    Article  Google Scholar 

  59. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. (2018). http://www.sciencedirect.com/science/article/pii/S1570870518305067

  60. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things: Sensing and communications on the field for precision agriculture. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (WF-IoT 2018), Singapore, February 2018

    Google Scholar 

  61. Wu, T.: Theory of the dipole antenna and the two-wire transmission line. J. Math. Phys. 2, 550–574 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Salam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salam, A., Raza, U. (2020). On Burial Depth of Underground Antenna in Soil Horizons for Decision Agriculture. In: Song, W., Lee, K., Yan, Z., Zhang, LJ., Chen, H. (eds) Internet of Things - ICIOT 2020. ICIOT 2020. Lecture Notes in Computer Science(), vol 12405. Springer, Cham. https://doi.org/10.1007/978-3-030-59615-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59615-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59614-9

  • Online ISBN: 978-3-030-59615-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics