Skip to main content

High-Order Attention Networks for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12261))

Abstract

Segmentation is a fundamental task in medical image analysis. Current state-of-the-art Convolutional Neural Networks on medical image segmentation capture local context information using fixed-shape receptive fields and feature detectors with position-invariant weights, which limits the robustness to the variance of input, such as medical objects of variant sizes, shapes, and domains. In order to capture global context information, we propose High-order Attention (HA), a novel attention module with adaptive receptive fields and dynamic weights. HA allows each pixel to has its own global attention map that models its relationship to all other pixels. In particular, HA constructs the attention map through graph transduction and thus captures high relevant context information at high-order. Consequently, feature maps at each position are selectively aggregated as a weighted sum of feature maps at all positions. We further embed the proposed HA module into an efficient encoder-decoder structure for medical image segmentation, namely High-order Attention Network (HANet). Extensive experiments are conducted on four benchmark sets for three tasks, i.e., REFUGE and Drishti-GS1 for optic disc/cup segmentation, DRIVE for blood vessel segmentation, and LUNA for lung segmentation. The results justify the effectiveness of the new attention module for medical image segmentation.

G. Cheng—This work is supported by the Beijing Natural Science Foundation (No. 4192029, No. 4202033).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/kmader/finding-lungs-in-ct-data/data/.

  2. 2.

    https://en.wikipedia.org/wiki/Transitive_closure.

  3. 3.

    https://refuge.grand-challenge.org/Results-ValidationSet_Online/.

References

  1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 (2018)

    Google Scholar 

  2. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. TMI 37(7), 1597–1605 (2018)

    Google Scholar 

  3. Fu, H., Xu, Y., Lin, S., Wong, D.W.K., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  4. Gu, Z., et al.: CE-net: context encoder network for 2D medical image segmentation. TMI 38(10), 2281–2292 (2019)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  6. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  9. Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: ISBI, pp. 53–56. IEEE (2014)

    Google Scholar 

  10. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. TMI 23(4), 501–509 (2004)

    Google Scholar 

  11. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  12. Wang, B., Qiu, S., He, H.: Dual encoding U-net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  13. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. TMI 38(11), 2485–2495 (2019)

    Google Scholar 

  14. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  15. Wang, Z., Dong, N., Rosario, S.D., Xu, M., Xie, P., Xing, E.P.: Ellipse detection of optic disc-and-cup boundary in fundus images. In: ISBI, pp. 601–604. IEEE (2019)

    Google Scholar 

  16. Wu, Y., et al.: Vessel-net: retinal vessel segmentation under multi-path supervision. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 264–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_30

    Chapter  Google Scholar 

  17. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14

    Chapter  Google Scholar 

  18. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  19. Zhang, S., et al.: Attention guided network for retinal image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_88

    Chapter  Google Scholar 

  20. Zhang, Z., Fu, H., Dai, H., Shen, J., Pang, Y., Shao, L.: ET-net: a generic edge-attention guidance network for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 442–450. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 385 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, F. et al. (2020). High-Order Attention Networks for Medical Image Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics