Skip to main content

Deep Reinforcement Active Learning for Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12261))

Abstract

In this paper, we propose a deep reinforcement learning algorithm for active learning on medical image data. Although deep learning has achieved great success on medical image processing, it relies on a large number of labeled data for training, which is expensive and time-consuming. Active learning, which follows a strategy to select and annotate informative samples, is an effective approach to alleviate this issue. However, most existing methods of active learning adopt a hand-design strategy, which cannot handle the dynamic procedure of classifier training. To address this issue, we model the procedure of active learning as a Markov decision process, and propose a deep reinforcement learning algorithm to learn a dynamic policy for active learning. To achieve this, we employ the actor-critic approach, and apply the deep deterministic policy gradient algorithm to train the model. We conduct experiments on two kinds of medical image data sets, and the results demonstrate that our method is able to learn better strategy compared with the existing hand-design ones.

J. Wang and Y. Yan—are the co-first authors. Y. Zhang—is the corresponding author. This work was supported by HKRGC GRF 12306616, 12200317, 12300218, 12300519, and 17201020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tianchi.aliyun.com/competition/entrance/231724/introduction.

  2. 2.

    https://www.kaggle.com/c/diabetic-retinopathy-detection/.

References

  1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  2. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: International Conference on Machine Learning, pp. 1587–1596 (2018)

    Google Scholar 

  3. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: Proceedings of International Conference on Machine Learning, pp. 1861–1870 (2018)

    Google Scholar 

  4. Hatamizadeh, A., et al.: Deep active lesion segmentation. In: International Workshop on Machine Learning in Medical Imaging, pp. 98–105 (2019)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: Proceedings of International Conference on Learning Representations (2015)

    Google Scholar 

  7. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  8. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  9. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  10. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden Markov models for information extraction. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_31

    Chapter  Google Scholar 

  11. Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  13. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  15. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  16. Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 5(3), 606–617 (2011)

    Article  Google Scholar 

  17. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  18. Wawrzynski, P.: Control policy with autocorrelated noise in reinforcement learning for robotics. Int. J. Mach. Learn. Comput. 5(2), 91 (2015)

    Article  Google Scholar 

  19. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubing Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 103 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Yan, Y., Zhang, Y., Cao, G., Yang, M., Ng, M.K. (2020). Deep Reinforcement Active Learning for Medical Image Classification. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics