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Abstract. Metal artifact reduction (MAR) in computed tomography (CT) is a
notoriously challenging task because the artifacts are structured and non-local
in the image domain. However, they are inherently local in the sinogram do-
main. Thus, one possible approach to MAR is to exploit the latter characteristic
by learning to reduce artifacts in the sinogram. However, if we directly treat the
metal-affected regions in sinogram as missing and replace them with the surro-
gate data generated by a neural network, the artifact-reduced CT images tend to be
over-smoothed and distorted since fine-grained details within the metal-affected
regions are completely ignored. In this work, we provide analytical investiga-
tion to the issue and propose to address the problem by (1) retaining the metal-
affected regions in sinogram and (2) replacing the binarized metal trace with the
metal mask projection such that the geometry information of metal implants is
encoded. Extensive experiments on simulated datasets and expert evaluations on
clinical images demonstrate that our novel network yields anatomically more pre-
cise artifact-reduced images than the state-of-the-art approaches, especially when
metallic objects are large.

Keywords: Artifact Reduction · Sinogram Inpainting · Image Enhancement.

1 Introduction

Modern computed tomography (CT) systems are able to provide accurate images for di-
agnosis [16,9,15]. However, highly dense objects such as metallic implants cause inac-
curate sinogram data in projection domain, which leads to non-local streaking artifacts
in image domain after reconstruction. The artifacts degrade the image quality of CT and
its diagnostic value. The challenge of metal artifact reduction (MAR) aggravates when
metallic objects are large.

Conventional MAR algorithms can be grouped into three categories: iterative re-
construction, image domain MAR and sinogram domain MAR. Iterative approaches
are often time-consuming and require hand-crafted regularizers, which limit their prac-
tical impacts[1,4]. Image domain methods aim to directly estimate and then remove
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the streak artifacts from the original contaminated image by image processing tech-
niques [11,6], but they achieve limited success in suppressing artifacts. Sinogram do-
main methods treat metal-affected regions in sinogram as missing and replace them
by interpolation [5] or forward projection [9] but they would introduce streak artifacts
tangent to the metallic objects, as the discontinuity in sinogram is hard to avoid.

Recently, convolutional neural networks (CNNs) has been applied to solve MAR
based on sinogram completion [2,14] or image processing [12]. DuDoNet [8] been
recently proposed to reduce the artifacts jointly in sinogram and image domains, which
offers advantages over the single domain methods. Specifically, DuDoNet consists of
two separate networks, one for sinogram enhancement (SE) and the other for image
enhancement (IE). These two networks are connected by a Radon inversion layer (RIL)
to allow gradient propagation during training.

However, there are still some limitations in DuDoNet [8]. First, in the SE network, a
binarized metal trace map is used to indicate the presence of metal in the sinogram. We
will theoretically show that such a binarized map is a rather crude representation that
totally discards the details inside the metal mask projection. Second, in DuDoNet, the
dual-domain enhancement is applied to linearly interpolated sinograms and the corre-
spondingly reconstructed CTs. As linear interpolation only provides a rough estimate to
the corrupted sinogram data, the artifact reduced images tend to be over-smoothed and
severely distorted around regions with high-density materials, e.g. bones. Finally, the
training data in DuDoNet are simulated by a limited number of projection angles and
rays and consequently, metal artifact is compounded by strong under-sampling effect.

To address these problems of DuDoNet [8], we present a novel approach utilizing
the realistic information in the original sinogram and image while clearly specifying
the metal mask projection, whose importance is justified via our theoretical derivation.
Furthermore, we introduce a padding scheme that is designed for sinogram and increase
the number of projection angles and rays to mitigate the under-sampling effect. We
boost the MAR performance of DuDoNet by a large margin (over 4dB) on a large-scale
database of simulated images. The improvement is more evident when metallic objects
are large. Expert evaluations confirm the efficacy of our model on clinical images too.

2 Problem Formulation

CT images represent spatial distribution of linear attenuation coefficients, which indi-
cate the underlying anatomical structure within the human body. Let X(E) denote the
linear attenuation image at energy level E. According to Lambert-Beer’s Law, the ideal
projection data (sinogram) S detected by the CT scanner can be expressed as:

S = −ln
∫
η(E)e−P(X(E))dE, (1)

where η(E) represents fractional energy at E and P denotes a forward projection (FP)
operator.

When metallic implants are present, X(E) has large variations with respect to E
because mass attenuation coefficient of metal λm(E) varies rapidly against E:

X(E) = Xr +Xm(E) = Xr + λm(E)ρmM, (2)
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Fig. 1. The proposed network architecture.

whereXm(E) denotes the linear attenuation image of the metallic implants,Xr denotes
the residual image without the implants and is almost constant with respect to E, ρm
is the density of metal, and M denotes a metal mask. According the linearity of P , the
forward projection of Xm(E) can be written as:

P(Xm(E)) = λm(E)ρmP(M) = λm(E)ρmMp, (3)

where Mp = P(M) is the metal mask projection. Substituting (3) into (1) yields

Sma = P(Xr)− ln
∫
η(E)e−λm(E)ρmMpdE. (4)

Here, the first term P(Xr) is the projection data originated from Xr. The second term
brings metal artifacts. Sinogram domain MAR algorithms aim to restore a clean coun-
terpart S∗ (ideally S∗ = P(Xr) ) from the contaminated sinogram Sma. Then, an
artifact-reduced image X∗ could be inferred by the filtered back projection (FBP) algo-
rithm, that is, X∗ = P−1(S∗).

3 Network Architecture

Following [8], we use a sinogram enhancement network (SE-Net) and an image en-
hancement network (IE-Net) to jointly restore a clean image. Fig. 1 shows the architec-
ture of our proposed network.

SE-Net. To restore a clean sinogram from Sma, conventional methods remove the
second term in (4) through inpainting. Following this concept, DuDoNet takes linearly
interpolated sinogram SLI and binarized metal trace Mt as inputs for sinogram domain
enhancement, where Mt = δ[Mp > 0] (δ[true] = 1, δ[false] = 0). Here, we ob-
serve that the second term in (4) is actually a function of Mp. Therefore, we propose
to directly utilize the knowledge of metal mask projection Mp . As shown in Fig.1, our
SE-Net uses a pyramid U-Net architecture φSE [7], which takes both Xma and Mp as
inputs. To retain the projection information, Mp goes through average pooling layers
and then fuse with multi-scale feature maps. As metals only affect part of the sino-
gram data of the corresponding projection pathway, SE-Net learns to correct sinogram
data within the metal trace and outputs the enhanced sinogram Sse. Sinogram enhanced
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image Xse is reconstructed by the differentiable RIL first introduced in [8], that is,
Xse = P−1(Sse).

Sinogram data is inherently periodic along the projection direction, while DuDoNet
uses zero padding for convolutions in SE-Net which ignores the periodic information.
Here, to offer more useful information for convolution, we propose a new padding strat-
egy for sinogram data using periodic padding along the direction of projection angles
and zero padding along the direction of detectors, as shown in Fig. 6.

IE-Net. To suppress the secondary artifacts in Xse, we apply an image enhance-
ment net, which refines Xse with M and Xma. The network contains two initial con-
volutional layers, a U-net [10] and a final convolutional layer. To pay attention to the
strongly distorted regions, we concatenate an image (Xse or Xma) with metal mask M
separately and obtain mask-aware feature maps by an initial convolutional layer with 64
3 × 3 kernels. The two sets of mask-aware feature maps are concatenated as the input
for the subsequent U-Net. A U-Net of depth 4 is used which outputs a feature map with
64 channels. Finally, a convolutional layer is used as the output layer which generates
the enhanced image Xout.

Learning. The total loss of our model consists of sinogam enhancement loss, image
enhancement loss and Radon consistency loss [8]:

Ltotal = αse||Sse−Sgt||1+(αrc||Xse−Xgt||1+αie||Xout−Xgt||1)�(1−M), (5)

where αse , αrc, and αie are blending weights. We empirically set them to 1.

4 Experiment

4.1 Dataset and Experimental Setup

Simulation data. We generate 360,000 cases for training and 2,000 cases for testing
based on clean CT images. We first resize CT images to a size of 416×416 and use 640
projection angles and 641 rays for imaging geometry to simulate realistic metal artifacts
(details are presented in Fig. 2).
Clinical data. We evaluate the proposed method using two clinical datasets. We refer
them to DL and CL. DL represents the DeepLesion dataset [13] and CL is a clinical CT
scan for a patient with metal rods and screws after spinal fusion. We randomly select 30
slices from DL and 10 slices from CL with more than 100 pixels above 3,000 HU and
moderate or severe metal artifacts. The clinical images are resized and processed with
the same geometry as the simulation data (see Fig. 2).
Implementation and training details. Our model is implemented using the PyTorch
framework. We use the Adam optimizer with (β1, β2) = (0.5, 0.999) to train the model.
The learning rate starts from 0.0002 and is halved for every 30 epochs. The model is
trained on an Nvidia 2080Ti GPU card for 201 epochs with a batch size of 2.
Metrics. We use peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
to evaluate the corrected image with a soft tissue window in the range of [-175, +275]
HU. To evaluate the sinogram restoration performance, we use mean square error (MSE)
to compare the enhanced Sse with Sgt. We group results according to the size of metal
implants to investigate the MAR performance.
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Fig. 2. Flowchart of metal artifact simulation and data generation of clinical images. Images with
red borders are the inputs of our model and images with green borders are ground truth.

Rating. A proficient radiologist with about 20 years of reading experience is invited to
rate the image quality for each group of the corrected images by paying close attention
to ameliorating beam hardening, removing primary streaky artifact, reducing secondary
streaky artifacts and overall image quality. The radiologist is asked to rate all the im-
ages from each group in a random order, with a rating from 1, indicating very good
MAR performance, to 4, not effective at all. We use paired T-test to compare the ratings
between our model and every state-of-the-art method.

4.2 Ablation Study

In this section, we investigate the effectiveness of different modules of the proposed
architecture. We use the following configurations for this ablation study:

a) IE-Net: the IE network with Xma and M ,
b) SE0-Net: the SE network with Sma and Mt,
c) SE-Net: the SE network with Sma and Mp,
d) SEp-Net: the SE-Net with sinogram padding,
e) SEp-IE-Net: the SEp-Net with an IE-Net to refine Xse with M ,
f) Ours: our full model, SEp-IE-Net refined with Xma.

Effect of metal mask projection (SE0-Net vs SE-Net). From Table 1, we can observe
the use of Mp instead of Mt improves the performance for at least 4.1 dB in PNSR
and reduces MSE from 0.95219 to 0.00074 for all metal sizes. The groups with large
metal implants benefit more than groups with small metal implants. As shown in Fig.
3, the artifacts in metal trace of SE0-Net are over-removed or under-removed, which
introduces bright and dark bands in the reconstructed CT image. With the help of Mp,
SE-Net can suppress the artifacts even when the metallic implants are large and the
surrogate data are more consistent with the correct data outside the metal trace.
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Large Metal → Small Metal Average

Xma 19.42/81.1/1.1e+1 23.07/85.4/7.3e+0 26.12/88.7/2.2e+0 26.60/89.3/1.7e+0 27.69/89.9/3.8e-1 24.58/86.9/4.5e+0
IE-Net 31.19/94.8/ n.a. 30.33/95.9/ n.a. 34.48/96.8/ n.a. 35.52/96.8/ n.a. 36.37/97.0/ n.a. 33.58/96.3/ n.a.
SE0-Net 20.28/86.5/3.0e+0 21.65/89.6/1.6e+0 26.39/91.7/3.0e-2 25.65/91.3/6.4e-2 24.93/91.1/8.4e-2 23.78/90.0/9.5e-1
SE-Net 26.71/91.0/2.7e-3 27.93/92.6/4.3e-4 28.20/93.2/2.4e-4 28.31/93.2/1.8e-4 28.34/93.3/1.4e-4 27.90/92.7/7.4e-4
SEp-Net 26.86/91.0/2.2e-3 27.94/92.5/4.4e-4 28.20/93.1/2.4e-4 28.31/93.2/1.9e-4 28.34/93.3/1.7e-4 27.93/92.6/6.5e-4
SEp-IE-Net 34.35/96.1/1.7e-3 36.03/96.8/4.4e-4 37.02/97.1/2.4e-4 37.53/97.2/1.9e-4 37.64/97.3/1.5e-4 36.52/96.9/5.5e-4
Ours 34.60/96.2/3.4e-3 36.84/97.0/4.2e-4 37.84/97.4/2.2e-4 38.34/97.4/1.7e-4 38.38/97.5/1.5e-4 37.20/97.1/8.8e-4

Table 1. Quantitative evaluation (PSNR(dB)/SSIM%/MSE) for different models.

Sgt/Xgt Sma/Xma SE0-Net SE-Net SEp-Net

Fig. 3. Comparison of different sinogram enhancement
networks. The enhanced sinograms and paired CT images
are presented. The red pixels stand for metal implants.

Xgt

SEp-IE-Net

Xma

Ours

Fig. 4. Comparison of refinement
with and without Xma.

Effect of sinogram padding (SE-Net vs SEp-Net). Sinogram padding mainly im-
proves the performance in the group with the largest metal objects, with a PSNR gain
of 0.15 dB and an MSE reduction of 0.00048. As shown in Fig. 3, the model with sino-
gram padding restores finer details of soft tissue between large metallic objects because
more correct information is retained by periodic padding than zero-padding.
Effect of learning withXma (SEp-IE-Net vs Ours). WhenXse is jointly restored with
the corrupted Xma, the sinogram correction performance is affected with an increment
of 0.00033 in MSE and of 0.7 dB in PSNR. More details of soft tissue around metal are
retained and the image becomes sharper, as shown in Fig. 4.

4.3 Comparison on Simulation Data

We compare our model with multiple state-of-the-art MAR methods. LI [5] and NMAR
[9] are traditional algorithms, in which we use the simulated Sma as inputs. Wang et
al. [12] propose conditional GAN for MAR purely in image domain. Here we refer their
method as cGan-CT and retrain the model using pix2pix [3] on our simulation data. For
CNNMAR, we use the trained model provided by [14]. Note that DuDoNet reported
here is trained on new simulation data with larger sinogram resolution (641 × 640),
which is different from the sinogram resolution (321 × 320) used in [8].
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Matrics Large Metal → Small Metal Average

Xma 19.42/81.1/1.1e+1 23.07/85.4/7.3e+0 26.12/88.7/2.2e+0 26.60/89.3/1.7e+0 27.69/89.9/3.8e-1 24.58/86.9/4.5e+0
cGAN-CT [12] 16.89/80.7/ n.a. 18.35/83.7/ n.a. 19.94/86.6/ n.a. 21.43/87.6/ n.a. 24.53/89.0/ n.a. 20.23/85.5/ n.a.
LI [5] 20.10/86.7/1.4e-1 22.04/88.7/9.4e-2 25.50/90.2/2.1e-2 26.54/90.7/1.9e-2 27.25/91.2/9.7e-3 24.28/89.5/5.7e-2
NMAR [9] 20.89/86.6/2.3e-1 23.73/89.7/1.3e-1 26.80/91.4/2.7e-2 27.25/91.8/3.6e-2 28.08/92.1/2.2e-2 25.35/90.3/9.0e-2
CNNMAR [14] 23.72/90.1/4.4e-2 25.78/91.6/2.4e-2 28.25/92.6/4.7e-3 28.87/92.9/3.3e-3 29.16/93.1/2.0e-3 27.16/92.0/1.6e-2
DuDoNet [8] 28.98/94.5/5.1e-2 31.00/95.6/3.9e-2 33.80/96.5/5.9e-3 35.61/96.8/3.6e-3 35.67/96.9/2.0e-3 33.01/96.0/2.0e-2
Ours 34.60/96.2/3.4e-3 36.84/97.0/4.2e-4 37.84/97.4/2.2e-4 38.34/97.4/1.7e-4 38.38/97.5/1.5e-4 37.20/97.1/8.8e-4

Table 2. Quantitative evaluation for proposed network and the state-of-the-arts methods.

Sgt/Xgt Sma/Xma cGAN-CT LI NMAR CNNMAR DuDoNet Ours

Fig. 5. Comparison with the state-of-the-art methods on simulation data.

Quantitative comparison. As shown in Table 2, we can see all the sinogram domain
MAR algorithms outperform image enhancement approach cGAN-CT in PSNR and
SSIM. It is because the sinogram restoration only happens inside the metal trace and
the correct sinogram data outside the metal trace help to retain the anatomical struc-
ture. CNN-based methods (CNNMAR, DuDoNet, Ours) achieve much better perfor-
mance than traditional methods, with higher PSNRs and SSIMs in image domain and
lower MSEs in sinogram domain. Among all the state-of-the-art methods, CNNMAR
achieves the best performance in sinogram enhancement and DuDoNet achieves the
best performance in reconstructed images. The proposed method attains the best per-
formance in all metal sizes, with an overall improvement of 4.2 dB in PSNR compared
with DuDoNet and 99.4% reduction in MSE compared with CNNMAR.
Visual comparison. As shown in Fig. 5, metallic implants such as spinal rods and
hip prosthesis cause severe streaky artifacts and metal shadows, which obscure bone
structures around them. cGan-CT cannot recover image intensity correctly for both
cases. Sinogram domain or dual-domain methods perform much better than cGan-CT.
LI, NMAR, and CNNMAR introduce strong secondary artifacts and distort the whole
images. In NMAR images, there are fake bone structures around the metals, which is re-
lated to segmentation error in the prior image from strong metal artifacts. The segmenta-
tion error is also visible in NMAR sinogram. CNNMAR cannot restore the correct bone
structures between rods in case 1. The tissues around the metals are over-smoothed in
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DuDoNet because LI sinogram and image are used as inputs, and the missing infor-
mation cannot be inferred later. Our model retains more structural information than
DuDoNet and generates anatomically more faithful artifact-reduced images.

0 0 0 0 0 0 0 0 0 0 0 0

Projection Angles

D
et

ec
to

rs

0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6. Sinogram padding.

DL CL
Rating P Value Rating P Value

cGAN-CT [12] 2.50±0.17 <0.001 4.00±0.00 <0.001
LI [5] 3.80±0.09 <0.001 3.70±0.15 <0.001
NMAR [9] 2.73±0.13 <0.001 2.70±0.15 <0.001
CNNMAR [14] 2.40±0.12 <0.001 2.20±0.20 0.003
DuDoNet [8] 1.46±0.11 0.312 1.70±0.21 0.278
Ours 1.27±0.13 n.a. 1.40±0.16 n.a.

Table 3. Ratings of clinical CT images.

4.4 Clinical Study

Rating. Table 3 summarizes the ratings and P values for comparison between our model
and the other methods. The performance of our model is significantly better than cGan-
CT, LI, NMAR, CNNMAR on both datasets (all P values ≤ 0.03). Our model also
achieves better ratings than DuDoNet.
Visual comparison. Fig. 7 shows two clinical CT images with metal artifacts. Case 1
is with moderate metal artifacts. cGan-CT does not suppress the artifacts completely
and generates some fake details. LI, NMAR, CNN-MAR remove all the artifacts but
introduce new streak artifacts, which is caused by the discontinuity in the corrected
sinogram. DuDoNet outputs over-smoothed sinogram, which leads to blurred tissues
close to the metal implants, such as muscle and bone. Only our model can provide
realistic enhanced sinogram and remove the artifacts while retaining the structure of
nearby tissues. Case 2 is very challenging as the rods bring strong metal shadows and
bright artifacts around the vertebra. cGan-CT recovers the shape of vertebra but changes
the overall image intensity. Other sinogram inpainting methods fail as the soft tissue and
bone near the rods are heavily distorted. Our model removes part of the dark bands and
reproduces correct anatomical structures around the rods.

The results show that our model generalizes well for clinical images with unknown
metal materials and geometries. We generate simulate training data using titanium and
will retrain the model with multiple metal materials to make it more robust. Meanwhile,
images with unknown geometry would be processed in the same simulation space. But
it is worth noting that our model is limited to 2D geometry and the metal artifacts in 3D
projection (e.g. cone-beam CT) are much more challenging.

5 Conclusion

We present a novel model to better solve the metal artifact reduction problem. We pro-
pose encoding mask projection for the sinogram restoration while utilizing the metal-
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Sma/Xma cGAN-CT LI NMAR CNNMAR DuDoNet Ours

Fig. 7. Comparison with the state-of-the-art methods on clinical CT images with metal artifacts.

affected real image and sinogram to retain the rich information in dual-domain learning.
With the fine details recovered in metal trace, our model can correctly restore the under-
lying anatomical structure even with large metallic objects present. Visual comparisons
and qualitative evaluations demonstrate that our model yields better image quality than
competing methods and exhibits a great potential of reducing CT metal artifacts even
when applied to clinical images. In the future, we plan to conduct a large scale clinical
study to thoroughly evaluate our approach in real clinical practices.
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