Skip to main content

\(\text {M}^2\text {Net}\): Multi-modal Multi-channel Network for Overall Survival Time Prediction of Brain Tumor Patients

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients. Although many OS time prediction methods have been developed and obtain promising results, there are still several issues. First, conventional prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume, which may not represent the full image or model complex tumor patterns. Second, different types of scanners (i.e., multi-modal data) are sensitive to different brain regions, which makes it challenging to effectively exploit the complementary information across multiple modalities and also preserve the modality-specific properties. Third, existing methods focus on prediction models, ignoring complex data-to-label relationships. To address the above issues, we propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (\(\text {M}^2\text {Net}\)). Specifically, we first project the 3D MR volume onto 2D images in different directions, which reduces computational costs, while preserving important information and enabling pre-trained models to be transferred from other tasks. Then, we use a modality-specific network to extract implicit and high-level features from different MR scans. A multi-modal shared network is built to fuse these features using a bilinear pooling model, exploiting their correlations to provide complementary information. Finally, we integrate the outputs from each modality-specific network and the multi-modal shared network to generate the final prediction result. Experimental results demonstrate the superiority of our \(\text {M}^2\text {Net}\) model over other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE TMI 37(3), 803–814 (2017)

    Google Scholar 

  2. Fan, J., Cao, X., Wang, Q., Yap, P.T., Shen, D.: Adversarial learning for mono-or multi-modal registration. Med. Image Anal. 58, 101545 (2019)

    Article  Google Scholar 

  3. Fan, J., Cao, X., et al.: BIRNet: brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 54, 193–206 (2019)

    Article  Google Scholar 

  4. Feng, X., Tustison, N., Meyer, C.: Brain tumor segmentation using an ensemble of 3 D U-Nets and overall survival prediction using radiomic features. In: International MICCAI Brainlesion Workshop, pp. 279–288. Springer (2018)

    Google Scholar 

  5. Gao, Y., Beijbom, O., et al.: Compact bilinear pooling. In: CVPR, pp. 317–326. IEEE (2016)

    Google Scholar 

  6. Gevertz, J.L., Torquato, S.: Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol. 243(4), 517–531 (2006)

    Article  MathSciNet  Google Scholar 

  7. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  9. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  10. Kao, P.Y., Ngo, T., Zhang, A., Chen, J.W., Manjunath, B.S.: Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 128–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_12

    Chapter  Google Scholar 

  11. Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A., Catheline, G.: 3D CNN-based classification using sMRI and MD-DTI images for alzheimer disease studies. arXiv preprint arXiv:1801.05968 (2018)

  12. Li, W., Zhao, Y., Chen, X., Xiao, Y., Qin, Y.: Detecting alzheimer’s disease on small dataset: a knowledge transfer perspective. IEEE JBHI 23(3), 1234–1242 (2018)

    Google Scholar 

  13. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual recognition. In: ICCV, pp. 1449–1457. IEEE (2015)

    Google Scholar 

  14. Lipkova, J., et al.: Personalized radiotherapy design for glioblastoma: integrating mathematical tumor models, multimodal scans, and bayesian inference. IEEE TMI 38(8), 1875–1884 (2019)

    MathSciNet  Google Scholar 

  15. Liu, J., Ji, S., Ye, J.: SLEP: sparse learning with efficient projections. Ariz. State Univ. 6(491), 7 (2009)

    Google Scholar 

  16. Liu, L., et al.: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imaging Behav. 13(5), 1333–1351 (2019). https://doi.org/10.1007/s11682-018-9949-2

    Article  Google Scholar 

  17. Liu, Y., Xu, X., Yin, L., Zhang, X., Li, L., Lu, H.: Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis. Am. J. Neuroradiol. 38(9), 1695–1701 (2017)

    Article  Google Scholar 

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark ( BRATS). IEEE TMI 34(10), 1993–2024 (2015)

    Google Scholar 

  19. Nie, D., Lu, J., Zhang, H., Adeli, E., Wang, J., et al.: Multi-channel 3 D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9(1), 1103 (2019)

    Article  Google Scholar 

  20. Pope, W.B., Sayre, J., Perlina, A., Villablanca, J.P., Mischel, P.S., Cloughesy, T.F.: MR imaging correlates of survival in patients with high-grade gliomas. Am. J. Neuroradiol. 26(10), 2466–2474 (2005)

    Google Scholar 

  21. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42(3), 203–231 (2001)

    Article  Google Scholar 

  22. Razek, A., El-Serougy, L., Abdelsalam, M., Gaballa, G., Talaat, M.: Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 60(2), 169–177 (2018). https://doi.org/10.1007/s00234-017-1955-3

    Article  Google Scholar 

  23. Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., Delattre, J.Y.: Primary brain tumours in adults. Lancet 379(9830), 1984–1996 (2012)

    Article  Google Scholar 

  24. Tang, Z., et al.: Pre-operative overall survival time prediction for glioblastoma patients using deep learning on both imaging phenotype and genotype. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 415–422. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_46

    Chapter  Google Scholar 

  25. Wang, Y.X., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 616–634. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_37

    Chapter  Google Scholar 

  26. Zacharaki, E.I., Morita, N., Bhatt, P., Orourke, D., Melhem, E.R., Davatzikos, C.: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. Am. J. Neuroradiol 33(6), 1065–1071 (2012)

    Article  Google Scholar 

  27. Zhang, C., Liu, Y., Fu, H.: Ae2-nets: autoencoder in autoencoder networks. In: VPR, pp. 2577–2585. IEEE (2019)

    Google Scholar 

  28. Zhang, T., et al.: SkrGAN: sketching-rendering unconditional generative adversarial networks for medical image synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 777–785. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_85

    Chapter  Google Scholar 

  29. Zhou, F., Li, T., Li, H., Zhu, H.: TPCNN: two-phase patch-based convolutional neural network for automatic brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 274–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_24

    Chapter  Google Scholar 

  30. Zhou, T., Fu, H., Chen, G., Shen, J., Shao, L.: Hi-net: hybrid-fusion network for multi-modal MR image synthesis. In: TMI. IEEE (2020)

    Google Scholar 

  31. Zhou, T., Thung, K.H., et al.: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum. Brain Mapp. 40(3), 1001–1016 (2019)

    Article  Google Scholar 

  32. Zhou, T., Zhang, C., Peng, X., Bhaskar, H., Yang, J.: Dual shared-specific multiview subspace clustering. IEEE Transactions on Cybernetics (2019)

    Google Scholar 

  33. Zhou, T., Fu, H., Gong, C., Shen, J., Shao, L., Porikli, F.: Multi-mutual consistency induced transfer subspace learning for human motion segmentation. In: CVPR, pp. 10277–10286. IEEE (2020)

    Google Scholar 

  34. Zhou, T., et al.: Deep multi-modal latent representation learning for automated dementia diagnosis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 629–638. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_69

    Chapter  Google Scholar 

  35. Zhu, H., Yuan, M., Qiu, C., et al.: Multivariate classification of earthquake survivors with post-traumatic stress disorder based on large-scale brain networks. Acta Psychiatr. Scand. 141(3), 285–298 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported in part by NSF of China (No: 61973090) and NSF of Tianjin (No: 19JCYBJC15200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huazhu Fu or Jianbing Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, T. et al. (2020). \(\text {M}^2\text {Net}\): Multi-modal Multi-channel Network for Overall Survival Time Prediction of Brain Tumor Patients. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics