Skip to main content

Holistic Analysis of Abdominal CT for Predicting the Grade of Dysplasia of Pancreatic Lesions

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

  • 7794 Accesses

Abstract

Diagnosis of various pancreatic lesions in CT images is a challenging task owing to a significant overlap in their imaging appearance. An accurate diagnosis of pancreatic lesions and the assessment of their malignant progression, or the grade of dysplasia, is crucial for optimal patient management. Typically, the grade of dysplasia is confirmed histologically via biopsy, yet certain radiological findings, including extrapancreatic, can serve as diagnostic clues of the disease progression. This work introduces a novel method of transforming intermediate activations for processing intact imaging data of varying sizes with convnets with linear layers. Our method allows to efficiently leverage the 3D information of the entire abdominal CT scan to acquire a holistic picture of all radiological findings for an improved and more precise classification of pancreatic lesions. Our model outperforms current state-of-the-art methods in classifying four most common lesion types (by 2.92%), while additionally diagnosing the grade of dysplasia. We conduct a set of experiments to illustrate the effects of a holistic CT analysis and the auxiliary diagnostic data on the accuracy of the final diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Facts & Figures. American Cancer Society (2020)

    Google Scholar 

  2. Basturk, O., Hong, S.M., et al.: A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am. J. Surg. Pathol. 39(12), 1730–1741 (2015)

    Article  Google Scholar 

  3. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)

  4. Buerke, B., Domagk, D., Heindel, W., Wessling, J.: Diagnostic and radiological management of cystic pancreatic lesions: important features for radiologists. Clin. Radiol. 67(8), 727–737 (2012)

    Article  Google Scholar 

  5. Chen, T., et al.: Multi-view learning with feature level fusion for cervical dysplasia diagnosis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 329–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_37

    Chapter  Google Scholar 

  6. Del Chiaro, M., et al.: Main duct dilatation is the best predictor of high-grade dysplasia or invasion in intraductal papillary mucinous neoplasms of the pancreas. Ann. Surg. (2019)

    Google Scholar 

  7. Dmitriev, K., Gutenko, I., Nadeem, S., Kaufman, A.: Pancreas and cyst segmentation. In: Medical Imaging 2016: Image Processing, vol. 9784, p. 97842C (2016)

    Google Scholar 

  8. Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition, June 2019

    Google Scholar 

  9. Dmitriev, K., et al.: Classification of pancreatic cysts in computed tomography images using a random forest and convolutional neural network ensemble. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 150–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_18

    Chapter  Google Scholar 

  10. Farrell, J.J., Fernández-del Castillo, C.: Pancreatic cystic neoplasms: management and unanswered questions. Gastroenterology 144(6), 1303–1315 (2013)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Heller, N., et al.: The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  13. Hu, H., Li, K., Guan, Q., Chen, F., Chen, S., Ni, Y.: A multi-channel multi-classifier method for classifying pancreatic cystic neoplasms based on ResNet. In: International Conference on Artificial Neural Networks, pp. 101–108 (2018)

    Google Scholar 

  14. Hussain, M.A., Hamarneh, G., Garbi, R.: ImHistNet: learnable image histogram based DNN with application to noninvasive determination of carcinoma grades in CT scans. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 130–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_15

    Chapter  Google Scholar 

  15. Hussein, S., Kandel, P., Bolan, C.W., Wallace, M.B., Bagci, U.: Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans. Med. Imaging 38(8), 1777–1787 (2019)

    Article  Google Scholar 

  16. Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H.: nnU-Net: breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128 (2019)

  17. Jiménez-Sánchez, A., et al.: Medical-based deep curriculum learning for improved fracture classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 694–702. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_77

    Chapter  Google Scholar 

  18. Kanayama, T., et al.: Gastric cancer detection from endoscopic images using synthesis by GAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 530–538. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_59

    Chapter  Google Scholar 

  19. Kawamoto, S., Horton, K.M., Lawler, L.P., Hruban, R.H., Fishman, E.K.: Intraductal papillary mucinous neoplasm of the pancreas: can benign lesions be differentiated from malignant lesions with multidetector CT? RadioGraphics 25(6), 1451–1468 (2005)

    Article  Google Scholar 

  20. Khashab, M.A., et al.: Tumor size and location correlate with behavior of pancreatic serous cystic neoplasms. Am. J. Gastroenterol. 106(8), 1521–1526 (2011)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Kong, B., Wang, X., Li, Z., Song, Q., Zhang, S.: Cancer metastasis detection via spatially structured deep network. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 236–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_19

    Chapter  Google Scholar 

  23. Kowalski, T., et al.: Management of patients with pancreatic cysts: analysis of possible false-negative cases of malignancy. J. Clin. Gastroenterol. 50(8), 649 (2016)

    Article  Google Scholar 

  24. LaLonde, R., et al.: INN: inflated neural networks for IPMN diagnosis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 101–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_12

    Chapter  Google Scholar 

  25. Li, H., et al.: Differential diagnosis for pancreatic cysts in CT scans using densely-connected convolutional networks. arXiv preprint arXiv:1806.01023 (2018)

  26. Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field. arXiv preprint arXiv:1806.07064 (2018)

  27. Liang, D., et al.: Combining convolutional and recurrent neural networks for classification of focal liver lesions in multi-phase CT images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 666–675. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_74

    Chapter  Google Scholar 

  28. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning rate. In: Proceedings of ICLR, May 2019

    Google Scholar 

  29. Luo, L., et al.: Deep angular embedding and feature correlation attention for breast MRI cancer analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 504–512. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_55

    Chapter  Google Scholar 

  30. Manvel, A., Vladimir, K., Alexander, T., Dmitry, U.: Radiologist-level stroke classification on non-contrast CT scans with deep U-Net. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 820–828. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_91

    Chapter  Google Scholar 

  31. Myronenko, A., Hatamizadeh, A.: 3D kidneys and kidney tumor semantic segmentation using boundary-aware networks. arXiv preprint arXiv:1909.06684 (2019)

  32. Wei, R., et al.: Computer-aided diagnosis of pancreas serous cystic neoplasms: a radiomics method on preoperative MDCT images. Technol. Cancer Res. Treat. 18 (2019)

    Google Scholar 

  33. Zhao, Z., Lin, H., Chen, H., Heng, P.-A.: PFA-ScanNet: pyramidal feature aggregation with synergistic learning for breast cancer metastasis analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 586–594. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_65

    Chapter  Google Scholar 

  34. Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_18

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NSF grants NRT1633299, CNS1650499, OAC1919752, and ICER1940302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitriev, K., Kaufman, A.E. (2020). Holistic Analysis of Abdominal CT for Predicting the Grade of Dysplasia of Pancreatic Lesions. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics