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Abstract. Every day, poison control centers (PCC) are called for imme-
diate classification and treatment recommendations if an acute intoxica-
tion is suspected. Due to the time-sensitive nature of these cases, doctors
are required to propose a correct diagnosis and intervention within a min-
imal time frame. Usually the toxin is known and recommendations can
be made accordingly. However, in challenging cases only symptoms are
mentioned and doctors have to rely on their clinical experience. Medical
experts and our analyses of a regional dataset of intoxication records
provide evidence that this is challenging, since occurring symptoms may
not always match the textbook description due to regional distinctions,
inter-rater variance, and institutional workflow. Computer-aided diagno-
sis (CADx) can provide decision support, but approaches so far do not
consider additional information of the reported cases like age or gender,
despite their potential value towards a correct diagnosis. In this work, we
propose a new machine learning based CADx method which fuses symp-
toms and meta information of the patients using graph convolutional
networks. We further propose a novel symptom matching method that
allows the effective incorporation of prior knowledge into the learning
process and evidently stabilizes the poison prediction. We validate our
method against 10 medical doctors with different experience diagnosing
intoxication cases for 10 different toxins from the PCC in Munich and
show our method’s superiority in performance for poison prediction.

Keywords: Graph Convolutional Networks · Representation learning ·
Disease classification.
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1 Introduction

Intoxication is undoubtedly one of the most significant factors of global suffering
and death. In 2016, the abuse of alcohol alone resulted in 2.8 million deaths
globally, and was accountable for 99.2 million DALYs (disability-adjusted life-
years) – 4.2% of all DALYs. Other drugs also summed up to 31.8 million DALYs
and 451,800 deaths world-wide [7]. In case of an intoxication, fast diagnosis and
treatment are essential in order to prevent permanent organ damage or even
death [10]. Since not all medical practitioners are experts in the field of toxi-
cology, specialized poison control centers (PCC) like the center in Munich were
established. These institutions can be called by anyone – doctor or layman –
to help in the classification and treatment of patients. Most of the time, the
substance responsible for the intoxication is known. However, when this is not
the case, the medical doctor (MD) working at the PCC has to reach a diagno-
sis solely based on the reported symptoms, without ever seeing the patient face
to face and give treatment recommendations accordingly. Especially for inexpe-
rienced MDs, this is a challenging task for several reasons. First, the symptom
description may not match the symptoms described in the literature that is used
to diagnose the patients. This is exacerbated by inter-individual, regional, and
inter-institutional differences in the description of symptoms when reaching the
doctor. Secondly, not all patients react to intoxication with the same symptoms
and they may have further confounding symptoms not caused by the intoxica-
tion but due to other medical conditions. Thirdly, meta information like age,
gender, weight, or geographic location, are not assessed in a structured way.
Current computer-aided diagnosis (CADx) systems in toxicology do not solve
these problems. Most are rule-based expert systems [1, 5, 12] which are very
sensitive towards input variations. Furthermore, they do not consider meta in-
formation or population context, despite their potential value in diagnosis. We
propose a model that can solve both mentioned problems. By employing Graph
Convolutional Networks (GCN) [6,9], we incorporate the meta information and
population context into the diagnosis process in a natural way using graph struc-
tures. Here, each patient corresponds to a node, and patients are connected ac-
cording to the similarity of their meta-information [13]. Connecting patients in
this way leads to neighborhoods of similar patients. GCNs perform local filtering
of graph-structured data analogous to Convolutional Neural Networks (CNN)
on regular grids. This relatively novel concept [2] already led to advancements
in medicine, ranging from human action prediction [16] to drug discovery [14].
It has also been used successfully in personalized disease prediction [3, 8, 13].
Notably, attention mechanisms [4, 11] improve filtering by weighting similarity
scores between nodes based on node features, which help to compensate for lo-
cally inaccurate graph structure. We base the proposed model on Graph Atten-
tion Networks (GAT) [15], one of the leading representatives of this GCN-class.
Contributions. Our approach for toxin prediction leverages structured incor-
poration of patient meta information to significantly boost performance. We
further address the issue of mismatching symptom descriptions by augmenting
the GCN with a parallel network layer which learns a conceptual mapping of
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Fig. 1. Schematic architecture of ToxNet. The symptom vectors are processed
in the graph-based GAT layers and the literature matching network in parallel.

patient symptoms to textbook symptoms described in literature. This network
branch is designed to explicitly incorporate domain prior knowledge from medi-
cal literature, and produces an alternative prediction. This stabilizes the output
of the model and ensures a reasonable prediction. In a set of experiments on real
PCC data, we show that our model outperforms several standard approaches.
Ultimately, we compare our model to patient diagnoses made by 10 MDs on a
separate real-life test set. The favorable performance of our model demonstrates
its high potential for decision support in toxicology.

2 Methodology

General framework. The proposed network performs the classification of the
intoxication of patients with 1D symptom vectors P using non-symptom meta in-
formation Q and literature symptom vectors H in an inductive graph approach.
Therefore, it optimizes the objective function f(P, G(P,Q,E),H) : P → Y,
where G(P,Q,E) is a graph with vertices containing symptoms P and meta
data Q. Binary edges E denote connections between the vertices and Y is a
set of poison classes. The symptom vectors contain a binary entry for every
considered symptom, 1 if the symptom is present, 0 if not. Therefore, every
patient has an individual symptom vector pi with the occurring symptoms,
and every poison has a vector hi of literature symptoms that should occur for
this poison, leading to the symptom sets: P = {p1,p2, ...,pM},pi ∈ {0, 1}FP ,
H = {h1,h2, ...,hC},hi ∈ {0, 1}FH , where M is the number of patients, C is
the number of poison classes, FP and FH are the dimensions of the patient and
literature symptom vector, respectively. Within Q = {q1, q2, ..., qM}, every vec-
tor qi contains the patient’s meta information. For every vertex in the graph
we concatenate the patient symptom vector pi with the meta data qi of Q and
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receive X with vectors xi of dimension F . Additionally, the edges E are cre-
ated based on the similarity of the meta information between two patients. The
network processes the patient symptoms within three GAT layers and a learned
explicit literature matching layer in parallel. The resulting representations are
fused to predict the corresponding intoxication.
Symptom vectors. As described above, every symptom vector corresponds to a
binary encoding of all symptoms present. The dimensions FP and FH of the vec-
tors refer to the total number of individual symptoms SP and SH that are listed
within all patient cases and poison descriptions respectively. Since real patient
cases also show some symptoms that are not part of the literature, FH < FP

and SH ⊆ SP . The first FH entries of every pi correspond to SH .
Neighborhood generation. The edges E represent the neighborhood of every
concatenated vector or vertex xi and define which vertices xj ∈ Ni should be
aggregated to update the current representation of xi within a GAT layer. The
neighborhood Ni of xi is defined as the set of all xj with eij ∈ E. An edge eij
is established when the meta information of xi and xj is consistent.
GAT layer. To update the representation of the vectors xi of X, the GAT layer
applies a shared learnable linear transformation W ∈ RF ′×F to all xi, resulting
in a new representation with dimension F ′. For every neighbor xj ∈ Ni, an at-
tention coefficient α is calculated using the shared attention mechanism a. The
coefficient represents the importance of xj for the update of xi and is calculated
as a(Wxi,Wxj) = aT [Wxi||Wxj ], where [ || ] represents the concatenation of

Wxi and Wxj , and a ∈ R2F ′
denotes a single feed-forward layer. To normalize

every attention coefficient α and allow easy comparability between coefficients,
after applying the leakyReLU activation σ, for every xi the softmax function is
applied to all coefficients corresponding to Ni.

αij =
exp(σ(aT ([Wxi||Wxj ])))∑
r∈Ni

exp(σ(aT [Wxi||Wxr]))
(1)

To update xi, every feature representation Wxj is weighted with the corre-
sponding αi,j and summed up to receive the new representation x′

i. The GAT

network repeats this step multiple times with individually learned Wk, so-called
heads, to statistically stabilize the prediction and receive individual attention
coefficients αk. The different representations x′

i are concatenated (represented
as ||) to yield the final new representation:

x′
i = ‖Kk=1σ

∑
j∈Ni

αk
ijW

kxj

 (2)

Here, K is the number of used heads and αk
ij is the attention coefficient of head

k for the vertices xi and xj [15].
Literature symptom matching. For every toxin class ci of all toxins C, the
literature provides a list of commonly occurring symptoms. These are encoded
in the binary symptom vector hi for every poison. We design a specific symp-
tom matching layer Wsymp ∈ RFH×FP which learns a mapping of the patient
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symptom vectors P to the literature symptoms. This concept results in an inter-
pretable transfer function which gives deeper insight into symptom correlations
and explicitly incorporates the domain prior knowledge from literature. Due to
the described setup of the symptom vectors, the first FH entries of every pi cor-
respond to the literature symptoms. Since these should be preserved after the
matching procedure, we initialize the first FH learnable parameters of Wsymp

with the unity matrix IFH
and freeze the diagonal during training. Like this,

every symptom s of SH is mapped to itself. The remaining symptoms only oc-
curring for the patient cases are transformed into a representation of a dimension
in agreement with the symptoms of the literature. As a second transformation,
we create a literature layer Wlit ∈ RC×FH whose ith row is initialized with hi

for all classes C and that is kept constant during training. The resulting trans-
formation yi,lit = Wlit ·σ(Wsymp pi) therefore maps the patient symptoms onto
the poison classes with the explicit usage of literature information.
Representation fusion. The output of the last GAT layer is processed by a FC
layer to result in yi,GAT with dimension C. The GAT and literature represen-
tations yi,GAT and yi,lit are concatenated, activated and transferred through a
last learnable linear transformation and a softmax function onto the class output
yi.

3 Experiments and Discussion

3.1 Experimental setup

Dataset. The dataset consists of 8995 patients and was extracted from the PCC
database from the years 2001-2019. All cases were mono-intoxications, meaning
only one toxin was present and the toxin was known. We chose the following
toxins: ACE inhibitors (n=119), acetaminophen (n=1376), antidepressants (se-
lective serotonin re-uptake-inhibitors, n=1073), benzodiazepines (n=577), beta
blockers (n=288), calcium channel antagonists (n=75), cocaine (n=256), ethanol
(n=2890), NSAIDs (excluding acetaminophen, n=1462)) and opiates (n=879).
The ten toxin groups were chosen either because they are part of the most fre-
quently occurring intoxications and lead to a different treatment and intervention
or because they have clinically distinct features, lead to severe intoxications, have
a specific treatment, and should not be missed. Accordingly, the different classes
are unbalanced in their occurrence since e.g. intoxication due to alcohol is a very
common phenomenon. Together with the patient symptoms, additional meta in-
formation for every case is given. From the full set of available information, we
use the parameters age group (child, adult, elder), gender, aetiology, point of
entry and week day and year of intoxication to set up the graph structure, since
these resulted in best performance.
Graph setup. Our graph is based on the described meta information for every
patient. An edge eij between patient xi and xj is established when the meta
data is consistent for the medically relevant selection of parameters, i.e., the
above-mentioned meta parameters. This results in a sparse graph that at the
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Table 1. Performance comparison of different methods for poison prediction.
Methods are described in detail in Sec. 3 (p-value: <0.01 ∗, <0.005 ∗ ∗).

Method F1 Sc. micro F1 Sc. macro p-val micro p-val macro

Naive Matching 0.201 ± 0.012 0.127 ± 0.007 ∗ ∗ ∗ ∗
Decision Tree 0.246 ± 0.016 0.227 ± 0.016 ∗ ∗ ∗ ∗
LitMatch 0.474 ± 0.005 0.342 ± 0.023 ∗ ∗ ∗ ∗
MLP with meta 0.544 ± 0.015 0.429 ± 0.019 ∗ ∗ ∗ ∗
GAT 0.629 ± 0.010 0.458 ± 0.021 ∗ ∗ ∗ ∗
ToxNet(S) 0.637 ± 0.013 0.478 ± 0.023 ∗ ∗ ∗ ∗
ToxNet 0.661 ± 0.010 0.529 ± 0.036 / /

same time has more meaningful edges (the graph increases the likelihood of pa-
tients with same poisonings to become connected).
Network setup. Hyperparameters: optimizer: Adam, learning rate: 0.001, weight
decay: 5e-4, loss function: cross entropy, dropout: 0.0, activation: ELU, heads: 5.
Model evaluation. First, we evaluate our network against different bench-
mark approaches. Then we compare the different network components within
an ablation study. By disabling different parts of the network, each individual
contribution is evaluated. Here, ’GAT’ refers to a setup where the GAT pipeline
of ToxNet is used alone, ’LitMatch’ to a setup where the parallel literature-
matching branch of ToxNet is used alone. Additionally, we test a sequential
setting, where the literature matching is performed prior, and the learned fea-
tures are transferred to the GAT (ToxNet(S)). All experiments use a 10-fold
cross-validation. After proving the superiority of our method, we compare our
network against the performance of 10 MDs, who are classifying the same un-
seen subset of the full test data as our method. This subset is divided into 25
individual cases for every MD, and 25 additional cases identical for all MDs, i.e.,
250 + 25 = 275 cases. In this setup, we are able to perform a statistical perfor-
mance analysis on a larger set of cases, but also evaluate the inter-variability of
the medical experts to distinguish between easy and difficult cases.

3.2 Experimental results

Performance comparison against other methods. In Tab. 1, we compare
the F1 micro and macro scores of different benchmark approaches against our
method ToxNet. The Naive Matching provides a lower baseline by simply vot-
ing for the poison which has the most overlap between literature and patient
symptoms. The decision tree was trained based on the literature symptoms and
then used on the patient symptoms. Both models perform poorly, which leads
to the conclusion that the available literature alone is not a good guide for poi-
son classification. With the LitMatch neural network branch from our approach,
we maintain the possibility to incorporate literature knowledge explicitly, but
receive significantly better results. In the next step, a Multi-Layer Perceptron
(MLP) with 3 hidden layers and 5 · 128, 5 · 64 and 64 hidden units respectively
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Fig. 2. Left: Comparison of ToxNet and different benchmark methods over 10-
fold cross validation. Right: Comparison of ToxNet and benchmark methods
with MDs’ performance over 10 different sets evaluated by one MD each.

(same as GAT) was trained on the patient data to perform the prediction. In
order to allow for a fair comparison, the patient’s meta information was concate-
nated to their symptom vector, thus resulting in both the MLP and GAT using
the same information. By comparing the MLP to a standard GAT network, it
is observable that the usage of the meta information inside our graph method
significantly boosts the classification performance, showing the value that the
graph structure adds to the evaluation. Adding the literature information into
the method by applying our proposed method ToxNet increases this performance
even further. It needs to be stated that this enhancement is reached, although
the literature data alone was shown not to be very informative for the task at
hand. We therefore assume that there is a synergy effect, and an improvement
of the literature might lead to an even stronger boost. To identify the individual
contributions, both pipelines within ToxNet (GAT and LitMatch) are also eval-
uated separately as described above. Within our experiment, we found that the
parallel setting of ToxNet is slightly superior to a sequential setting (ToxNet(S)).
The results described above are also illustrated in the boxplot in Fig. 2 (left).
Performance comparison against medical experts. In order to evaluate
the performance of our method against medical experts, we conducted a survey
with 10 medical doctors (MDs) from the toxicology department of the Klinikum
rechts der Isar in Munich, where each MD had to classify 50 intoxication cases
that were split up as described above. Fig. 2 (right) shows a box plot of the
performance of the 10 MDs compared with different benchmark methods as well
as our method ToxNet on the ten individual sets of 25 cases each, so 250 in total.
All three graph-based approaches clearly outperform the MDs due to the opti-
mized usage of meta information. For this small subset of the full test set, the
performance boost of ToxNet compared to GAT is not as severe as for the full
test set. However, the overall performance is more stable (smaller margins). In
Fig. 3, we performed a detailed inter-variability study on the 25 cases evaluated
by all doctors. Except for one case, every intoxication case correctly classified
by the majority of MDs, our method accomplished as well. Furthermore, for
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Fig. 3. Clinician inter-variability and comparison with ToxNet. Poison classes
are ordered alphabetically, each group separated with a white spacing.

eight cases, where only half of the MDs or less correctly predicted the intoxica-
tion, our method still succeeded. These results demonstrate that our proposed
ToxNet architecture can predict simple cases reliably and at an expert-level per-
formance, while additionally providing a high prediction stability on cases that
are challenging to a majority of doctors. Even compared to the two best MDs,
who correctly classified 12 cases, our method overall resulted in 15 correct poi-
son predictions. Six cases were wrongly classified by all doctors and our method.
These are data samples with insufficient documentation quality (e.g. only a sin-
gle generic symptom) which indicate intrinsic challenges from medical data in
the wild.

4 Conclusion

In this work, we proposed ToxNet, a new architecture for improved intoxica-
tion prediction. The network effectively incorporates patient symptoms, meta-
information like age group or residence, and domain prior knowledge from liter-
ature. We showed that the usage of meta-data within the graph structure of a
graph convolutional network inside ToxNet leads to a significantly higher clas-
sification performance than all other methods investigated. In our benchmark
study, we explicitly showed that a simple concatenation of the meta-data to the
patient symptom vector is not sufficient – the improvement can be attributed
to the patient graph. Additionally, we introduced a symptom matching method
that allows the explicit usage of literature knowledge and included it into a par-
allel learning approach which further improved the overall network performance.
Although we found that the literature information by itself was not informative
enough for a satisfactory classification, we showed that a parallel integration
with our graph network still led to synergy effects and an improved classifica-
tion. We evaluated our network against 10 MDs with different experience levels
and found a more stable prediction on both simple and highly challenging in-
toxication cases, given the high inter-rater variability among experts. We thus
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demonstrated the potential of ToxNet as a clinical decision support in this highly
critical domain of medical intervention. On a wider scale, we believe that our ar-
chitecture and validation provide a valuable case study: medical expertise can be
regionally flavored and affect symptoms in a way that is not necessarily covered
by expert literature. A proper modeling of these effects, fused with recent ad-
vances in graph-based population models, can lead to significant improvements
in the field of computer-aided diagnosis and support clinical practice.
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