Skip to main content

Cycle Structure and Illumination Constrained GAN for Medical Image Enhancement

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The non-uniform illumination or imbalanced intensity in medical images brings challenges for automated screening, examination and diagnosis of diseases. Previously, CycleGAN was proposed to transform input images into enhanced ones without paired images. However, it did not consider many local details of the structures, which are essential for medical images. In this paper, we propose a Cycle Structure and Illumination constrained GAN (CSI-GAN), for medical image enhancement. Inspired by CycleGAN based on the global constraints of the adversarial loss and cycle consistency, the proposed CSI-GAN treats low and high quality images as those in two domains and computes local structure and illumination constraints for learning both overall characteristics and local details. To evaluate the effectiveness of CSI-GAN, we have conducted experiments over two medical image datasets: corneal confocal microscopy (CCM) and endoscopic images. The experimental results show that our method yields better performance than both conventional methods and other deep learning based methods. As a complementary output, we will release the CCM dataset to the public in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lai, M.: Deep learning for medical image segmentation. arXiv preprint arXiv:1505.02000 (2015)

  2. Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6

    Chapter  Google Scholar 

  3. Zhao, Y., et al.: Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. IEEE Trans. Med. Imaging 36(1), 51–63 (2017)

    Article  Google Scholar 

  4. Mou, L., et al.: Cs-net: channel and spatial attention network for curvilinear structure segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2019)

    Google Scholar 

  5. Zhao, Y., et al.: Uniqueness-driven saliency analysis for automated lesion detection with applications to retinal diseases. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 109–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_13

    Chapter  Google Scholar 

  6. Abdullah-Al-Wadud, M., Kabir, M., Dewan, M., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  7. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  8. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)

    Article  Google Scholar 

  9. Zhao, Y., Zheng, Y., Liu, Y., Zhao, Y., Luo, L., Yang, S., Na, T., Yongtian, W., Liu, J.: Automatic 2d/3d vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imaging 37(2), 438–450 (2018)

    Article  Google Scholar 

  10. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  11. Zhao, Y., et al.: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy. IEEE Transactions on Medical Imaging (2020)

    Google Scholar 

  12. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6306–6314 (2018)

    Google Scholar 

  13. Guo, X.: Lime: a method for low-light image enhancement. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 87–91 (2016)

    Google Scholar 

  14. Lv, F., Lu, F., Wu, J., Lim, C.: Mbllen: low-light image/video enhancement using cnns. In: BMVC, pp. 220 (2018)

    Google Scholar 

  15. Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J.: Msr-net: low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488 (2017)

  16. Lore, K.G., Akintayo, A., Sarkar, S.: Llnet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  17. Gatys, L., Ecker, A., Bethge, M.: A neural algorithm of artistic style. J. Vis. 16(12), 326 (2016)

    Article  Google Scholar 

  18. Zhang, H., Dana, K.: Multi-style generative network for real-time transfer. arXiv preprint arXiv:1703.06953 (2017)

  19. Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. arXiv preprint arXiv:1906.06972 (2019)

  20. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  21. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics gems IV, Academic Press Professional, pp. 474–485. Inc (1994)

    Google Scholar 

  24. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Sign. Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  25. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  26. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., Medasani, S.S.: Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1–6 IEEE (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported by China Postdoctoral Science Foundation (2018M640578, 2019M652156), Ningbo “2025 S & T Megaprojects” (2019B10033, 2019B10061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Liu or Yitian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y. et al. (2020). Cycle Structure and Illumination Constrained GAN for Medical Image Enhancement. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics