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Abstract

Despite recent progress in image-to-image translation, it remains challenging to apply such 

techniques to clinical quality medical images. We develop a novel parameterization of conditional 

generative adversarial networks that achieves high image fidelity when trained to transform MRIs 

conditioned on a patient’s age and disease severity. The spatial-intensity transform generative 

adversarial network (SIT-GAN) constrains the generator to a smooth spatial transform composed 

with sparse intensity changes. This technique improves image quality and robustness to artifacts, 

and generalizes to different scanners. We demonstrate SIT-GAN on a large clinical image dataset 

of stroke patients, where it captures associations between ventricle expansion and aging, as well as 

between white matter hyperintensities and stroke severity. Additionally, SIT-GAN provides a 

disentangled view of the variation in shape and appearance across subjects.
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1 Introduction

Many tasks in medical image analysis require mapping images in one distribution to images 

in another distribution, conditioned on a set of attributes. Such mappings can be used to 

synthesize medical images of a specified imaging modality [12] or patient phenotype [9], 

while preserving most characteristics of an input image such as gross anatomy. Driven by 

advances in generative adversarial networks (GANs), medical image-to-image translation 

has been applied to tasks as diverse as data augmentation [1], super-resolution [8], MR-to-

CT translation [12], and prediction of disease trajectories [9]. In such GANs, a generator is 

trained to map input images sampled from a source distribution to synthetic images that 

appear to belong to a target distribution, while an adversarial discriminator drives the 

generator to produce realistic images [3,17]. Medical applications of GANs have often been 

restricted to large datasets of high-quality research scans. When the target distribution is 

underrepresented in the training data or the data consists of lower quality clinical scans, 

GANs may introduce severe artifacts.
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We address this challenge by introducing the spatial-intensity transform generative 

adversarial network (SIT-GAN), which constrains the generator output to transformations 

composed of a smooth deformation field and a sparse intensity difference map applied to the 

input image. This parameterization produces images with fewer artifacts and high fidelity 

(Fig. 1), and also yields separate visualizations of morphological and tissue intensity 

changes, which can be relevant to identifying and characterizing disease processes.

Previously, spatial transforms have been coupled with intensity transforms for performing 

medical image registration [4,16] and data augmentation in the context of semi-supervised 

segmentation [1]. To the best of our knowledge, this is the first work demonstrating that they 

are effective at regularizing the outputs of conditional generative models.

Our novel representation of image changes is complementary to prior work on conditional 

GANs that modify the loss function in the context of simulating aging in brain MRIs. Xia et 

al. [14] introduce identity-preservation and self-reconstruction losses that penalize large 

changes in the image for small translations in age. Ravi et al. [9] introduce biological 

constraints that encourage the network to follow a known hallmark of neurodegeneration, 

e.g., voxels should darken with age at a rate similar to neighboring voxels. The proposed 

representation is orthogonal to such changes in the loss function and could be combined to 

further improve the translation results.

We demonstrate the proposed method on a large dataset of clinical quality brain MRIs of 

stroke patients. Our experiments suggest that in such settings, SIT-GAN outperforms the 

state of the art on medical image-to-image translation.

2 Methods

2.1 Image-to-Image Translation with Partially Observed Attributes in Cross-Sectional Data

Given coordinate space Ω, a set D = xi, yi i = 1
N  of images xi ∈ X:Ω ℝ and conditional 

attributes yi ∈ Y (e.g., age and stroke severity), we want to train a generator to transform 

images such that their conditional attributes are shifted by a specified amount. Our network 

consists of a generator G:X × Y X, discriminator D:X ℝ (logits), and regressor 

R:X Y . Here we consider continuous vector attributes yi = (yi,1, …, yi,m) that may have 

missing values. Categorical attributes can be included by expanding regressor R to produce 

categorical outputs (classifier).

Generator.—The generator G transforms an input image such that the transformed image 

appears to take on different attribute values from the input image, but maintains aspects of 

the input image that are unrelated to the conditional attributes, such as non-pathological 

anatomy.

Define zi = (xi, yi), zj = (xj, yj), Δy = yj−yi. During training, the generator is updated using 

the following loss terms (Fig. 2):

ℓcc = ∥ G G xi, Δy , − Δy − xi ∥ 1 cycle consistency loss (1)
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ℓattr = 1
m ∥ R G xi, Δy − R xi − Δy ∥ 2

2 relative attribute loss (2)

ℓadv = − D G xi, Δy Wasserstein adversarial loss (3)

Parameterizing generator G in terms of attribute difference Δy enables evaluation of the 

cycle consistency loss ℓcc even when images have missing attributes [13]. To compute Δy in 

such cases, we introduce the convention that yj,k−yi,k = 0 if either attribute is missing. 

Putting the terms together,

ℒG = Ezi, zj ℓadv + λattrℓattr + λccℓcc (4)

where λattr and λcc are empirically determined weights.

Discriminator.—We simultaneously train the discriminator D with the Wasserstein GAN 

losses and gradient penalty [6]:

ℒD = Ezi, zj D G xi, Δy − Ezi D xi − Ex λGP ∥ ∇xD x ∥ 2 − 1 2
(5)

where x is obtained by interpolating real and translated images as described in [6], and λGP 

is a weight.

Regressor.—The regressor R is trained to predict the attributes of real images, using a 

mean squared error loss.

ℒR = Ezi
1
m ∥ R xi − yi ∥ 2

2
(6)

We share layers between the discriminator and regressor, so a single optimizer is assigned to 

both subnetworks and updated using ℒD + λRℒR .

2.2 Spatial-Intensity Transform Generator

To constrain the generator to spatial-intensity transforms, we define its outputs as the 

deformation field F :Ω ℝd for image dimensionality d, with corresponding transform 

TF :X X,, and the intensity difference map Δx:Ω ℝ ..

Rather than directly producing the target image, the generator outputs the deformation field 

F and intensity changes Δx, then transforms the input image as TF (xin + Δx). In addition, we 

added regularization terms to the generator’s loss function that encourage the deformation 

field to be smooth and the intensity difference map to be sparse. Specifically, we used the 

discrete total variation norm [2] to regularize the deformation field and the L1-norm to 

regularize the intensity change:

Wang et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∥ F ∥ TV = 1
Ω Σω ∈ Ω ∥ ∇F ω ∥ 2 (7)

∥ Δx ∥ 1 = 1
Ω Σω ∈ Ω Δx ω , (8)

where ∥∇F(ω)∥ is approximated using finite differences. The total generator loss becomes 

ℒG = Ezi, zj ℓadv + λattrℓattr + λccℓcc + λTV ∥ F ∥ TV + λΔx ∥ Δx ∥ 1  for empirically 

determined weights λTV and λΔx.

2.3 Network Architecture and Implementation Details

SIT-GAN’s generator was implemented as a 2D U-Net that takes in attribute difference Δy 
by replicating each dimension of Δy spatially and concatenating channel-wise with the input 

image xin. The U-Net has 4 spatial resolutions, with 200 channels and 6 residual blocks at 

the lowest resolution. The discriminator and regressor share 5 down-sampling blocks, then 

split into fully connected layers of the appropriate dimension (1 output for the discriminator, 

m outputs for the regressor).

Batch normalization is used for all convolutional layers. Down-sampling blocks in the U-Net 

use convolutional layers alternating with max blur pooling [15]. Up-sampling blocks in the 

U-Net use bilinear upsampling between convolutional layers. The generator uses ReLU 

activations, the discriminator and regressor use leaky ReLU activations.

The subnetworks were trained with Adam optimizers, with one step in G’s optimizer for 

every two steps in D/R’s optimizer. D/R were trained for 50K iterations with a learning rate 

of 1.2×10−5, and G was trained for 25K iterations with a learning rate of 1.5 × 10−4. Both 

optimizers used a minibatch size of 4, and moving average parameter β1 = 0.86. We used the 

following loss weights: λR = 18, λattr = 3.5, λcc = 2.1, λTV = 16, λΔx = 49, and λGP = 1.1.

2.4 Baseline Networks

To investigate the influence of different components, we compare SIT-GAN to a network 

whose generator does not transform the image and several networks whose generators use 

alternate transformations of the input image. These different parameterizations are 

summarized in Table 1.

In the unconstrained network, the generator directly synthesizes a new image. We trained 

two variants of this model: one that has identical hyperparameters to SIT-GAN and other 

baseline networks, and one in which we tuned the number of layers, types of layers, loss 

term weights, and type of optimizer to make it as competitive with SIT-GAN as possible. In 

the tuned model, the discriminator and regressor were trained with a learning rate of 8.6 × 

10−5, and the generator was trained with a learning rate of 1.1 × 10−4. The U-Net had 3 

spatial resolutions with 96 channels and 3 residual blocks at the lowest resolution. Strided 

convolutions were used for downsampling. The discriminator/regressor had 6 downsampling 

blocks using max blur pooling. The tuned network used loss weights of λR = 21, λattr = 1, 

λcc = 4, and λGP = 8. The Adam optimizer had moving average parameter β1 = 0.46.
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In the difference transform network, the generator is constrained to a sparse intensity 

difference transform of the input image. It penalizes output images that differ from their 

inputs using the L1-norm, making it suitable for capturing image-to-image translations that 

only involve small regions of the image. It corresponds to SIT-GAN with λTV = ∞.

The optical flow network is constrained to smooth deformations of the input image, which 

can capture morphological variation but not intensity changes within anatomical structures. 

It corresponds to SIT-GAN with λΔx = ∞.

The weighted flow network outputs a weighted sum of the input image and a smooth 

deformation of it, with pixel-wise weights computed by the generator. It is the type of model 

used to synthesize successive frames in video-to-video translation models [11].

2.5 Data and Evaluation

Our dataset consisted of 1821 axial brain fluid-attenuated inversion recovery (FLAIR) MRIs 

from 12 clinical sites in the MRI-GENIE study [5], obtained within 48 h of symptom onset 

in acute ischemic stroke patients. 418 images acquired from the largest site (Massachusetts 

General Hospital) were used for 5-fold cross validation. The models were then tested on the 

1403 scans from all other clinical sites. Age was available for all patients, and stroke severity 

(NIHSS scale of 0–36) was available for 746 patients.

MRIs were preprocessed with resampling to isotropic 1mm resolution, N4 bias field 

correction, ANTS registration to a FLAIR atlas, normalisation of the white matter intensity, 

and cropping to 224 × 192. Native resolution varied, but was typically around 1mm × 1mm 

× 6mm, which resulted in significant partial volume effects. The 15 middle axial slices of 

each subject were used, and all slices from the same subject were grouped into the same 

validation fold. We scaled age and stroke severity so that the empirical distribution of each 

attribute within the training data had a mean of 0 and a standard deviation of 1. The images 

were also augmented using horizontal flips and random affine transformations.

To quantify the realism of model outputs in the absence of paired data, we computed the 

Fréchet Inception Distance (FID) [7] between the distribution of generated images and the 

distribution of validation or test images. We also used Precision and Recall for Distributions 

(PRD) [10] to compute the F1/8 and F8 scores of our generator. A high F1/8 suggests that 

most modes of the generated distribution belong to the true distribution, whereas a high F8 

suggests that most modes of the true distribution belong to the generated distribution. Modes 

are estimated by finding clusters of images in Inception v3 embedding space.

We also evaluated the effectiveness of each model in transforming the target attribute by 

measuring the performance of an Inception v3 regressor on our generated images. This 

regressor was pre-trained on ImageNet and fine-tuned on FLAIR MRIs to predict both age 

and stroke severity. We emphasize that this Inception v3 regressor is different from the 

regressor used during training of the GAN, as the generator may have learned to exploit 

peculiarities in the particular regressor it is trained with. Using a separately trained regressor 

with a different architecture eliminates any gains that the generator accrued in this manner. 

We measure the mean squared error (MSE) of age and stroke severity (NIHSS) respectively, 
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normalized to the empirical standard deviation of the attribute. The MSE of the Inception 

regressor on held out subjects in the cross-validation set is 0.24 on age and 0.70 on NIHSS, 

while it is 0.34 on age and 0.62 on NIHSS in the test set.

3 Results

Our results suggest that SIT-GAN achieves better image fidelity than the unconstrained 

model as measured by FID, precision (F1/8) and recall (F8). The statistically significant 

improvement in both cross-validation and testing (p<0.01 for each metric by t-test) shows 

that this pattern generalizes beyond the particular clinical site it was trained on.

Even after tuning, the unconstrained model introduces artifacts in translated images such as 

dark streaking of the gray matter with increasing age, and partial volume-like filling of the 

ventricles with decreasing age. While some of these artifacts do appear in the dataset, Fig. 3 

illustrates such artifacts in images that did not have them originally. SIT-GAN does not 

suffer from these artifacts, and still captures the growth of the ventricles correlated with 

aging.

The difference transform, optical flow, weighted flow, and SIT-GAN models all perform 

relatively well on distributional metrics but underperform the unconstrained model on target 

domain transfer (Table 2). This suggests that an unconstrained generator sacrifices image 

quality to capture more variation in the conditional attribute compared to the constrained 

generators.

In general, SIT-GAN attains the best image fidelity, and performs similarly to the optical and 

weighted flow models in target distribution matching. Often it is overly conservative in 

transforming input images, but when it succeeds, it is able to capture the expansion of the 

ventricles correlated with aging as well as the increase in white matter hyperintensities 

associated with stroke severity (Fig. 1), while producing less severe artifacts than the 

unconstrained model as seen in Fig. 3.

The learned spatial and intensity transforms also correspond to changes in morphology and 

tissue properties that are associated with particular patient phenotypes or disease processes. 

In FLAIR MRIs of stroke patients, the patient’s age is correlated with the volume of the 

ventricles as well as the volume of white matter hyperintensities in the periphery of the 

ventricles. These effects, which would be inseparable in the unconstrained model, can be 

visualized separately with SIT-GAN by examining the deformation field and intensity 

differences individually (Fig. 4).

4 Conclusion

We presented SIT-GAN, a novel parameterization of GANs for medical image-to-image 

translation that improves image fidelity and reduces artifacts. In many medical applications, 

the desired transformations can be well represented by a smooth deformation and a sparse 

intensity difference transform, and our method can provide robustness to artifacts. We 

demonstrated our model on a challenging dataset of clinical quality FLAIR MRIs of stroke 

patients. Our model produces high quality images that visualize correlations of the brain’s 
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shape and appearance with the patient’s age and stroke severity. Additionally, our 

parameterization provides a disentangled view of changes in anatomical shape and tissue 

appearance. Such advances in image-to-image translation can help drive progress in many 

areas of medical image analysis, including data augmentation, data harmonization, and 

prediction or visualization of disease trajectories.

Because our proposed representation sacrifices the quality of target domain matching to 

improve image fidelity, our work leaves open questions about how to navigate or circumvent 

this trade-off. We suggest that promising directions include carefully relaxing the constraints 

(reducing regularization weights) over the course of training, or incorporating priors over 

anatomical structures. Future work will also extend our 2D model to 3D, using low-memory 

techniques to compensate for memory limitations, and more aggressive data augmentation to 

accommodate higher model capacity.
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Fig. 1. 
Synthetic fluid-attenuated inversion recovery (FLAIR) MRIs of acute ischemic stroke 

patients, obtained by transforming an input MRI (center column) conditioned on changes in 

age (top) and stroke severity (bottom). Increasing age correlates with increasing ventricular 

volume, and increasing stroke severity correlates with increasing volume of periventricular 

white matter hyperintensities (see red arrow).
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Fig. 2. 
The generator takes in an image and the desired change in each attribute. In our spatial-

intensity transform GAN, the generated image is obtained by applying an intensity 

difference map and a deformation field to the input image. The parameters of the generator 

are updated from three loss terms: a cycle consistency loss ℓcc that discourages unnecessary 

changes to the input image, an attribute loss ℓattr that encourages the generated image to 

match the desired attribute values, and an adversarial loss ℓadv that penalizes unrealistic 

generated images.
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Fig. 3. 
Comparison of stroke MRIs translated to a different age using the baseline model and our 

model. While both models change the ventricle shape appropriately, the baseline model blurs 

the ventricles (top rows) and excessively darkens the gray matter (bottom rows).
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Fig. 4. 
The magnitude of the deformation field and intensity difference map of the spatial-intensity 

model for an example transformation. The shrinkage of the ventricles and sulci are well 

captured by the deformation field, while tissue appearance changes are reflected in the 

difference map.
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Table 1.

Parameterizations of the generator output.

Parameterization G Outputs Generated image Regularizers

Unconstrained xout xout N/A

Difference Transform Δx xin + Δx ∥Δx∥1

Optical Flow F TF (xin) ∥F∥TV

Weighted Flow F,w w ⊙ TF (xin) + (1 − w) ⊙ xin ∥F∥TV

SIT-GAN F,Δx TF (xin + Δx) ∥F∥TV, ∥Δx∥1
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Table 2.

Performance metrics for translation of FLAIR MRIs conditioned on age and stroke severity (NIHSS), 

averaged over 5 runs. FID = Fréchet Inception Distance, P/R = Precision (F1/8) and Recall (F8) as defined in 

[10].

Model Type FID P/R Age MSE NIHSS MSE

Cross-validation

Unconstrained 152.1 0.01/0.01 1.51 2.18

Unconstrained (tuned) 61.4 0.07/0.21 0.51 1.12

Difference transform 57.2 0.38/0.59 1.37 1.14

Optical flow 59.5 0.30/0.52 0.71 1.09

Weighted flow 60.6 0.23/0.46 0.85 1.31

SIT-GAN 38.6 0.35/0.59 0.85 1.16

Test

Unconstrained 180.5 0.07/0.02 1.11 1.21

Unconstrained (tuned) 51.0 0.41/0.21 0.99 1.01

Difference transform 68.4 0.53/0.68 1.25 1.12

Optical flow 28.4 0.62/0.69 1.16 1.11

Weighted flow 35.0 0.56/0.59 1.32 1.14

SIT-GAN 27.6 0.53/0.66 1.28 1.12
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