Skip to main content

Semantic Hierarchy Guided Registration Networks for Intra-subject Pulmonary CT Image Alignment

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

CT scanning has been widely used for diagnosis, staging and follow-up studies of pulmonary nodules, where image registration plays an essential role in follow-up assessment of CT images. However, it is challenging to align subtle structures in the lung CTs often with large deformation. Unsupervised learning-based registration methods, optimized according to the image similarity metrics, become popular in recent years due to their efficiency and robustness. In this work, we consider segmented tissues, i.e., airways, lobules, and pulmonary vessel structures, in a hierarchical way and propose a multi-stage registration workflow to predict deformation fields. The proposed workflow consists of two registration networks. The first network is the label alignment network, used to align the given segmentations. The second network is the vessel alignment network, used to further predict deformation fields to register vessels in lungs. By combining these two networks, we can register lung CT images not only in the semantic level but also in the texture level. In experiments, we evaluated the proposed algorithm on lung CT images for clinical follow-ups. The results indicate that our method has better performance especially in aligning critical structures such as airways and vessel branches in the lung, compared to the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  2. The National Lung Screening Trial Research Team: Reduced lung-cancer mortality with low-dose computed tomographic screening. New England J. Med. 365(5), 395–409 (2011)

    Article  Google Scholar 

  3. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  4. Eppenhof, K.A.J., Pluim, J.P.W.: Pulmonary CT registration through supervised learning with convolutional neural networks. IEEE Trans. Med. Imaging 38(5), 1097–1105 (2019)

    Article  Google Scholar 

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  6. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems. pp. 2017–2025. Curran Associates, Inc. (2015)

    Google Scholar 

  7. Stergios, C., et al.: linear and deformable image registration with 3D convolutional neural networks. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 13–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_2

    Chapter  Google Scholar 

  8. Hansen, L., Dittmer, D., Heinrich, M.P.: Learning deformable point set registration with regularized dynamic graph CNNs for large lung motion in COPD patients. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 53–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_7

    Chapter  Google Scholar 

  9. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  10. Sato, Y., et al.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998)

    Article  Google Scholar 

  11. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  12. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Key Research and Development Program of China (2018YFC0116400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L. et al. (2020). Semantic Hierarchy Guided Registration Networks for Intra-subject Pulmonary CT Image Alignment. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics