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Abstract. We introduce a fluid-based image augmentation method for
medical image analysis. In contrast to existing methods, our framework
generates anatomically meaningful images via interpolation from the
geodesic subspace underlying given samples. Our approach consists of
three steps: 1) given a source image and a set of target images, we con-
struct a geodesic subspace using the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) model; 2) we sample transformations from
the resulting geodesic subspace; 3) we obtain deformed images and seg-
mentations via interpolation. Experiments on brain (LPBA) and knee
(OAI) data illustrate the performance of our approach on two tasks: 1)
data augmentation during training and testing for image segmentation;
2) one-shot learning for single atlas image segmentation. We demonstrate
that our approach generates anatomically meaningful data and improves
performance on these tasks over competing approaches. Code is available
at https://github.com/uncbiag/easyreg.

1 Introduction

Training data-hungry deep neural networks is challenging for medical image
analysis where manual annotations are more difficult and expensive to obtain
than for natural images. Thus it is critical to study how to use scarce annotated
data efficiently, e.g., via data-efficient models [30/IT], training strategies [20]
and semi-supervised learning strategies utilizing widely available unlabeled data
through self-training [3IT6], regularization [4], and multi-task learning [7U3TI36].

An alternative approach is data augmentation. Typical methods for medi-
cal image augmentation include random cropping [I2], geometric transforma-
tions [I8IT5I24] (e.g., rotations, translations, and free-form deformations), and
photometric (i.e., color) transformations [I412T]. Data-driven data augmentation
has also been proposed, to learn generative models for synthesizing images with
new appearance [28/9], to estimate class/template-dependent distributions of de-
formations [I0/T9I34] or both [356]. Compared with these methods, our approach
focuses on a geometric view and constructs a continuous geodesic subspace as
an estimate of the space of anatomical variability.

Compared with the high dimensionality of medical images, anatomical vari-
ability is often assumed to lie in a much lower dimensional space [I]. Though
how to directly specify this space is not obvious, we can rely on reasonable
assumptions informed by the data itself. We assume there is a diffeomorphic
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Fig. 1. Hlustration of our fluid-based data augmentation using a 1D (left) and 2D
(right) geodesic subspace. We assume a registration from a source to a target image in
unit time. In 1D, we can sample along the geodesic path (¢ € [0, 1]) between the source
(t = 0) and the target images (¢ = 1). We can also extrapolate ¢ ¢ [0,1]. In the 2D
case, a source and two target images define a two-dimensional geodesic subspace.

transformation between two images, that image pairs can be connected via a
geodesic path, and that appearance variation is implicitly captured by the ap-
pearance differences of a given image population. For longitudinal image data, we
can approximate images at intermediate time points by interpolation or predict
via extrapolation. As long as no major appearance changes exist, diffeomorphic
transformations can provide realistic intermediate image&ﬂ Based on these con-
siderations, we propose a data augmentation method based on fluid registration
which produces anatomically plausible deformations and retains appearance dif-
ferences of a given image population. Specifically, we choose the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) model as our fluid registration
approach. LDDMM comes equipped with a metric and results in a geodesic path
between a source and a target image which is parameterized by the LDDMM
initial momentum vector field. Given two initial momenta in the tangent space
of the same source image, we can define a geodesic plane, illustrated in Fig. |1}
similarly, we can construct higher dimensional subspaces based on convex com-
binations of sets of momenta [22]. Our method includes the following steps: 1)
we compute a set of initial momenta for a source image and a set of target im-
ages; 2) we generate an initial momentum via a convex combination of initial
momenta; 3) we sample a transformation on the geodesic path determined by
the momentum; and 4) we warp the image and its segmentation according to
this transformation.

Data augmentation is often designed for the training phase. However, we
show the proposed approach can be extended to the testing phase, e.g., a testing
image is registered to a set of training images (with segmentations) and the deep
learning (DL) segmentation model is evaluated in this warped space (where it
was trained, hence ensuring consistency of the DL input); the predicted segmen-
tations are then mapped back to their original spaces. In such a setting, using

! In some cases, for example for lung images, sliding effects need to be considered,
violating the diffeomorphic assumption.
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LDDMM can guarantee the existence of the inverse map whereas traditional
elastic approaches cannot.

Contributions: 1) We propose a general fluid-based approach for anatomically
consistent medical image augmentation for both training and testing. 2) We
build on LDDMM and can therefore assure well-behaved diffeomorphic transfor-
mations when interpolating and extrapolating samples with large deformations.
3) Our method easily integrates into different tasks, such as segmentation and
one-shot learning for which we show general performance improvements.

2 LDDMM Method

LDDMM [5] is a fluid-based image registration model, estimating a spatio-
temporal velocity field v(¢,z) from which the spatial transformation ¢ can be
computed via integration of dyp(t, z) = v(t, ¢(t,x)), ¢(0,z) = x. For appropri-
ately regularized velocity fields [§], diffeomorphic transformations can be guar-
anteed. The optimization problem underlying LDDMM can be written as

1 1
v* = argmin 7 / lo(t)|2 ddt+Sim(I(1), 1) s.t. SI+(VI,v) =0, I(0) = I
v 0
(1)

where V denotes the gradient, (-,-) the inner product, and Sim(A, B) is a sim-
ilarity measure between images. We note that I(1,7) = Iy o ¢~!(1,2), where
¢! denotes the inverse of ¢ in the target image space. The evolution of this
map follows ;o' + Dy ~'v = 0, where D is the Jacobian. Typically, one seeks
a velocity field which deforms the source to the target image in unit time. To
assure smooth transformations, LDDMM penalizes non-smooth velocity fields
via the norm ||v||2 = (Lv, Lv), where L is a differential operator.

At optimality the following equations hold [33] and the entire evolution can
be parameterized via the initial vector-valued momentum, m = L Lv:

m(0)* = argmin %(m(O),U(O» + Sim(Ip 0 =1 (1), 1), )
m(0)
st. @'+ D lo=0, p(0,2)=x, (3)

oym + div(v)m + Dv' (m) + Dm(v) = 0, m(0) = mg,v =K *m, (4)

where we assume (LTL)~1m is specified via convolution Kxm. Eq. is the Euler-
Poincaré equation for diffeomorphisms (EPDiff) [33], defining the evolution of
the spatio-temporal velocity field based on the initial momentum myg.

The geodesic which connects the image pair (I, Ioop~1(1)) and approximates
the path between (Iy, I;) is specified by mg. We can sample along the geodesic
path, assuring diffeomorphic transformations. As LDDMM assures diffeomorphic
transformations, we can also obtain the inverse transformation map, ¢ (defined
in source image space, whereas ¢! is defined in target image space) by solving

o(l,z) == —l—/o v(t, o(t,z)) dt, ¢(0,z) = x. (5)
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Computing the inverse for an arbitrary displacement field on the other hand
requires the numerical minimization of ||~ o ¢ — id||?. Existence of the inverse
map cannot be guaranteed for such an arbitrary displacement field.

3 Geodesic Subspaces

We define a geodesic subspace constructed from a source image and a set of
target images. Given a dataset of size N, I, € R” denotes an individual image ¢ €
{1... N}, where D is the number of voxels. For each source image I., we further
denote a target set of K images as If. We define M§ := {mg’ |IM(I.,I;), M :
RP x RP — RP*4 [, € I} as a set of K different initial momenta, where M
maps from an image pair to the corresponding initial momentum via Eqs. 2}{4}
d is the spatial dimension. We define convex combinations of My, as

C(Mf) = { i

K K
g =Y Ami mi € My, \; >0V, Aj=1p. (6)
j=1

j=1

Restricting ourselves to convex combinations, instead of using the entire space
defined by arbitrary linear combinations of the momenta M allows us to retain
more control over the resulting momenta magnitudes. For our augmentation
strategy we simply sample an initial momentum m§ from C(My,), which, ac-
cording to the EPDiff Eq. [d] determines a geodesic path starting from I.. If we
set K = 2, for example, the sampled momentum parameterizes a path from a
source image toward two target images, where the \; weigh how much the two
different images drive the overall deformation. As LDDMM registers a source to
a target image in unit time, we obtain interpolations by additionally sampling ¢
from [0, 1], resulting in the intermediate deformation w;% (t) from the geodesic
path starting at I, and determined by m§. We can also extrapolate by sampling
t from R\ [0, 1]. We then synthesize images via interpolation: I, o @7;% (t).

4 Segmentation

In this section, we first introduce an augmentation strategy for general image
segmentation (Sec. [4.1)) and then a variant for one-shot segmentation (Sec. [4.2)).

4.1 Data augmentation for general image segmentation

We use a two-phase data augmentation approach consisting of (1) pre-augmentation
of the training data and (2) post-augmentation of the testing data. During the
training phase, for each training image, I., we generate a set of new images by
sampling from its geodesic subspace, C'(M§ ). This results in a set of deformed
images which are anatomically meaningful and retain the appearance of I.. We
apply the same sampled spatial transformations to the segmentation of the train-
ing image, resulting in a new set of warped images and segmentations. We train

a segmentation network based on this augmented dataset.
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During the testing phase, for each testing image, we also create a set of new
images using the same strategy described above. Specifically, we pair a testing
image with a set of training images to create the geodesic subspace for sampling.
This will result in samples that come from a similar subspace that has been
used for augmentation during training. A final segmentation is then obtained
by warping the predicted segmentations back to the original space of the image
to be segmented and applying a label-fusion strategy. Consequently, we expect
that the segmentation network performance will be improved as it (1) is allowed
to see multiple views of the same image and (2) the set of views is consistent
with the set of views that the segmentation network was trained with.

Segmentation I.o0 f,a;hlr (t)
6

Fig. 2. Illustration of the training phase data augmentation. Given a source image
I. and a set of target images Ik, a set of momenta My is first computed. Then
a momentum mg is sampled from the convex combination of these momenta C(MF)
defining a geodesic path starting from the source image. Lastly, a transformation 30:7% ()
is sampled on the geodesic and used to warp the source image and its segmentation.

Fig. [2] illustrates the training phase data augmentation. We first compute
Mg, by picking an image I., ¢ € {1...N} from a training dataset of size N
and a target set I of cardinality K, also sampled from the training set. We
then sample m§ € C(M§5,) defining a geodesic path from which we sample a
deformation cp;l% (t) at time point t. We apply the same strategy multiple times
and obtain a new deformation set for each I, ¢ € {1...N}. The new image set
{I. 0 gpr_h% (t)} consisting of the chosen set of random transformations of I. and
the corresponding segmentations can then be obtained by interpolation.

Fig.[3illustrates the testing phase data augmentation. For a test image I. and
its target set I sampled from the training set, we obtain a set of transformations
{gogl% (t)}. By virtue of the LDDMM model these transformations are invertible.

For each @E% (t) we can therefore efficiently obtain the corresponding inverse

map @y (t). We denote our trained segmentation network by H : RP — RPxL
which takes an image as its input and predicts its segmentation labels. Here, L

is the number of segmentation labels. Each prediction H (I e gpfhé (t)) is warped
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Fig. 3. Illustration of the testing phase data augmentation. Given a source image
I. and a set of target images Ik, a geodesic subspace is determined first. A set of
transformations <prfnlc (t) is then sampled from this space and, at the same time, the
corresponding inverge transformations @rme (t) are obtained. A segmentation network
‘H is applied to each warped image and the resulting segmentations H(I. o ‘Pr_hlg (t)) are
warped back to the source image space. A label fusion strategy is applied to obtain the
final segmentation.

back to the space of I, via H (Ic o cp:hlg (t)) °© @me(t). The final segmentation is
obtained by merging all warped predictions via a label fusion strategy.

Dataset The LONI Probabilistic Brain Atlas [25] (LPBA40) dataset contains
volumes of 40 healthy patients with 56 manually annotated anatomical struc-
tures. We affinely register all images to a mean atlas [I3], resample to isotropic
spacing of 1 mm, crop them to 196 x 164 x 196 and intensity normalize them to
[0,1] via histogram equalization. We randomly take 25 patients for training, 10
patients for testing, and 5 patients for validation.

The Osteoarthritis Initiative [29] (OAI) provides manually labeled knee im-
ages with segmentations of femur and tibia as well as femoral and tibial carti-
lage [2]. We first affinely register all images to a mean atlas [13], resample them
to isotropic spacing of 1 mm, and crop them to 160 x 200 x 200. We randomly take
60 patients for training, 25 patients for validation, and 52 patients for testing.

To evaluate the effect of data augmentation on training datasets with different
sizes, we further sample 5, 10, 15, 20, 25 patients as the training set on LPBA40
and 10, 20, 30, 40, 60 patients as the training set for OAI

Metric We use the average Dice score over segmentation classes for all tasks
in Sec. 4.1l and Sec. [£.21

Baselines Non-augmentation is our lower bound method. We use a class-
balanced random cropping schedule during training [32]. We use this cropping
schedule for all segmentation methods that we implement. We use a U-Net [23]
segmentation network. Random B-Spline Transform is a transformation locally
parameterized by randomizing the location of B-spline control points. Denote
(+,-) as the number of control points distributed over a uniform mesh and the
standard deviation of the normal distribution, units are in mm. The three set-



Anatomical Data Augmentation via Fluid-based Image Registration 7

tings we use are (103,3), (103,4), (203,2). During data augmentation, we ran-
domly select one of the settings to generate a new example.

Settings During the training augmentation phase (pre-aug), we randomly
pick a source image and K targets, uniformly sample )\; in Eq. [6] and then uni-
formly sample t. For LPBA40, we set K = 2 and ¢ € [—1,2]; for the OAI data,
we set K =1 and ¢t € [—1,2]. For all training sets with different sizes, for both
the B-Spline and the fluid-based augmentation methods and for both datasets,
we augment the training data by 1,500 cases. During the testing augmentation
phase (post-aug), for both datasets, we set K = 2 and t € [—1,2] and draw
20 synthesized samples for each test image. The models trained via the aug-
mented training set are used to predict the segmentations. To obtain the final
segmentation, we sum the softmax outputs of all the segmentations warped to
the original space and assign the label with the largest sum. We test using the
models achieving the best performance on the validation set. We use the opti-
mization approach in [I7] and the network of [26/27] to compute the mappings
M on LPBA40 and OAI, respectively.

LPBA4O 010 oAl
0.810 0905 OAI Dataset
0.805 0.900 ~ — Method Dice (std)
o0 et /// Brainstorm  79.94 (2.22)
0.890{ — .

Soros Some o Fluid-Aug 8081 (2.35)
0.790 —f non-aug 0.880 ~f~ non-aug Brainstormyea 86.83 (2.21)
0785 bspline bspline k
: —+ pre-aug 0.875 —+ pre-aug Fluid-Augrear,, 87.74 (1.82)
07801 , Tt opostawg | os70] O postaw Fluid-Augrear 88.31 (1.56)

593“9“‘10 90“9“‘15 93“2“‘;0 va(‘e“‘is e 10 ¢a"\¢“‘;‘\ va"‘en‘; 93"‘@‘10 ‘)a‘-\e“‘; o™ Upper-bound 90.01 (1.58)

Fig. 4. Segmentation performance for segmentation tasks. The left two plots show Dice
scores for the different methods with different training set sizes on the LPBA40 and
OAI datasets for general segmentation. Performance increases with training set size.
Fluid-based augmentation (pre-aug and post-aug) shows the best performance. The
right table compares the performance for one-shot segmentation in Sec. Fluid-
based augmentation methods perform better than their Brainstorm counterparts.

Results Fig. [4] shows the segmentation performance on the LPBA40 and
the OAI datasets. For training phase augmentation, fluid-based augmentation
improves accuracy over non-augmentation and B-Spline augmentation by a large
margin on the OATI dataset and results in comparable performance on the LPBA40
dataset. This difference might be due to the larger anatomical differences in the
LPBA40 dataset compared to the OAI dataset; such large differences might not
be well captured by inter- and extrapolation along a few geodesics. Hence, the
OALI dataset may benefit more from the anatomically plausible geodesic space.
When test phase augmentation is used in addition to training augmentation,
performance is further improved. This shows that the ensemble strategy used
by post-aug, where the segmentation network makes a consensus decision based
on different views of the image to be segmented, is effective. In practice, we
observe that high-quality inverse transformations (that map the segmentations
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back to the test image space) are important to achieve good performance. These
inverse transformations can efficiently be computed via Eq. [f] for our fluid-based
approach.

4.2 Data augmentation for one-shot segmentation

We explore one-shot learning. Specifically, we consider single atlas medical im-
age segmentation, where only the atlas image has a segmentation, while all other
images are unlabeled. We first review Brainstorm [35], a competing data augmen-
tation framework for one-shot segmentation. We then discuss our modifications.

In Brainstorm, the appearance of a sampled unlabeled image is first trans-
fered to atlas-space and subsequently spatially transformed by registering to an-
other sampled unlabeled image. Specifically, a registration network H" is trained
to predict the displacement field between the atlas A and the unlabeled images.
For a given image I, the predicted transformation to A is p.(x) = H" (I, A) +z.
A set of approximated inverse transformations {¢_.!,c € 1... N} from the atlas
to the image set can also be predicted by the network H". These inverse trans-
formations capture the anatomical diversity of the unlabeled set and are used to
deform the images. Further, an appearance network H is trained to capture the
appearance of the unlabeled set. The network is designed to output the residue
r between the warped image I. o ¢ and the atlas, r. = H*(A, I. o ¢.). Finally,
we obtain a new set of segmented images by applying the transformations to the
atlas with the new appearance: {(A + ;) o gaj_l, i,je1l...N}.

We modify the Brainstorm idea as follows: 1) Instead of sampling the trans-
formation ¢_ !, we sample 907%13 (t) based on our fluid-based approach; 2) We
remove the appearance network and instead simply use {I. o pc,c € 1...N}
to model appearance. l.e., we retain the appearance of individual images, but
deform them by going through atlas space. This results by construction in a real-
istic appearance distribution. Our synthesized images are {(I;0¢;) 030;;- (t), md €

0

C(Mg(), teR,i,j €1...N}. We refer to this approach as Fluid-Aug,eqi-

Dataset We use the OAI dataset with 100 manually annotated images and a
segmented mean atlas [13]. We only use the atlas segmentation for our one-shot
segmentation experiments.

Baseline Upper-bound is a model trained from 100 images and their manual
segmentations. We use the same U-net as for the general segmentation task in
Sec. Brainstorm is our baseline. We train a registration network and an
appearance network separately, using the same network structures as in [35].
We sample a new training set of size 1,500 via random compositions of the
appearance and the deformation. We also compare with a variant replacing the
appearance network, where the synthesized set can be written as {(I; o ;) o
@;17 i,j € 1...N}. We refer to this approach as Brainstormi.cq.

Settings We set K = 2 and t € [—1,2] and draw a new training set with
1,500 pairs the same way as in Sec. We also compare with a variant where we
set t = 1 (instead of randomly sampling it), which we denote Fluid-Augreai,_, -
Further, we compare with a variant using the appearance network, where the
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synthesized set is {(A—|—Ti)og0;; (t),m} e C(M),t e R,i,j€1...N}. We refer
to this approach as F' luid—Aug.0

Fig. Al shows better performance for fluid-based augmentation than for Brain-
storm when using either real or learnt appearance. Furthermore, directly using
the appearance of the unlabeled images shows better performance than using
the appearance network. Lastly, randomizing over the location on the geodesic
(Fluid— Augreqr) shows small improvements over fixing ¢ = 1 (Fluid—Augrwlt1 ).

5 Conclusion

We introduced a fluid-based method for medical image data augmentation. Our
approach makes use of a geodesic subspace capturing anatomical variability. We
explored its use for general segmentation and one-shot segmentation, achieving
improvements over competing methods. Future work will focus on efficiency im-
provements. Specifically, computing the geodesic subspaces is costly if they are
not approximated by a registration network. We will therefore explore introduc-
ing multiple atlases to reduce the number of possible registration pairs.
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t=0.5 t=1

Fig. 5. Comparison between inter- and extrapolation of the displacement field (top
row) and geodesic inter- and extrapolation (bottom row). We show the center slices
from the sagittal view of the 3D MRI knee images. For both methods, we assume they
have the same transformation ¢~'(1) at t = 1. Then we compute the displacement-
field based inter- and extrapolation as cp;flfme(t, x) = (p7*(1,2) — 2)t + z, whereas
0. bpa s 1S obtained via geodesic shooting (based on solving the EPDiff Eq. E[) For
large deformations, i.e., t = —3 and ¢ = 4, affine extrapolation results in foldings while
extrapolation via the LDDMM geodesic results in diffeomorphic transformations.
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Fig. 6. Ablation study on testing augmentation size (first row) and the choice of K
(second row). For the first row, we evaluate segmentation accuracies for a different
numbers of augmentation samples in the test phase. N times denotes that a testing
image is deformed by N different random transformations drawn from the geodesic
subspace. Segmentation accuracies start to saturate for N > 20. For the second row,
we evaluate the performance for different choices of K (i.e., the dimensionality of
the geodesic subspace). A larger K does not necessarily result in better segmentation
accuracies.
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non-aug pre-aug post-aug manual seg

Fig.7. From the first to the fourth column, we visualize the segmentation results
in Sec. [i] on LPBA40 (first row) and OAI (second row); from left to right: results
without augmentation (non-aug), training phase augmentation (pre-aug), testing phase
augmentation (post-aug), and the manual segmentations. We observe segmentation
refinement after pre-aug and post-aug. For the last two columns, we compare the learnt
appearance A + r; (fifth column) and the real appearance I; o ¢; (sixth column) in
Sec. where each row is a patient. The learnt appearance is smoother and hence
shows less image texture. In our case, the segmentation network trained using the learnt
appearance does not match the noisy testing data well.
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4

Fig. 8. Visualization of synthesized images obtained from a source image and its K = 2
geodesic subspace. From left to right: the first and the last column show the two target
images. The remaining columns show synthesized images I. oap;% (t). The column index

(,-) denotes the mixture weights (A1, A2) in Eq.[6] determining how much target 1 and

target 2 influence the overall deformation. From top to bottom: each row refers to

the time ¢ sampled along the geodesic path. For the row ¢ = 0, the transformation is
1

the identity, i.e., I. = I. o QO:;L(O: (0). For the row ¢ = 1, the warped image has similar

anatomical structure as target 1 when (A1, A2) = (1.0,0.0) while is similar to target
2 when (A1, A2) = (0.0,1.0). Columns (1.0,0.0) and (0.0,1.0) show samples on two

geodesic paths (K = 1) toward target 1 and target 2, respectively.
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