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Abstract

The cochlear implant (CI) is a neural prosthetic that is the standard-of-care treatment for severe-to-

profound hearing loss. CIs consist of an electrode array inserted into the cochlea that electrically 

stimulates auditory nerve fibers to induce the sensation of hearing. Competing stimuli occur when 

multiple electrodes stimulate the same neural pathways. This is known to negatively impact 

hearing outcomes. Previous research has shown that image-processing techniques can be used to 

analyze the CI position in CT scans to estimate the degree of competition between electrodes 

based on the CI user’s unique anatomy and electrode placement. The resulting data permits an 

algorithm or expert to select a subset of electrodes to keep active to alleviate competition. Expert 

selection of electrodes using this data has been shown in clinical studies to lead to significantly 

improved hearing outcomes for CI users. Currently, we aim to translate these techniques to a 

system designed for worldwide clinical use, which mandates that the selection of active electrodes 

be automated by robust algorithms. Previously proposed techniques produce optimal plans with 

only 48% success rate. In this work, we propose a new graph-based approach. We design a graph 

with nodes that represent electrodes and edge weights that encode competition between electrode 

pairs. We then find an optimal path through this graph to determine the active electrode set. Our 

method produces results judged by an expert to be optimal in over 95% of cases. This technique 

could facilitate widespread clinical translation of image-guided cochlear implant programming 

methods.
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1 Introduction

In the United States, it is estimated that 2 to 3 out of every 1000 children are born with some 

degree of hearing loss, and 37.5 million adults experience some degree of hearing loss [1]. 

The cochlear implant (CI) is a neural prothesis that, over the last two decades, has become 
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the standard treatment for severe-to-profound hearing loss [2]. As of 2012, an estimated 

324,000 CIs have been implanted worldwide, and in the United States, approximately 

58,000 adults and 38,000 children have received a CI [1]. The CI is primarily used in cases 

of sensorineural hearing loss, where damage or defects affecting hearing are in the cochlea, 

a.k.a., the inner ear. In a subject without hearing loss, sounds reaching the cochlea would be 

transduced to electrical impulses that stimulate auditory nerve fibers. The nerve fibers are 

tonotopically organized, meaning that activation of nerve fibers located in different regions 

of the cochlea create the sensation of different sound frequencies. The frequency for which a 

nerve fiber is activated in natural hearing is called its characteristic frequency. As such, in 

natural hearing nerve fibers are activated when their characteristic frequencies are present in 

the incoming sound.

In a patient with hearing loss, sounds no longer properly activate auditory nerve fibers. The 

purpose of CI is to bypass the natural transduction mechanisms and provide direct electrical 

stimulation of auditory nerve fibers to induce hearing sensation. A CI consists of an 

electrode array that is surgically implanted in the cochlea (see Fig. 1a) and an external 

processor. The external processor translates auditory signals to electrical impulses that are 

distributed to the electrodes in the array according to the patient’s MAP, which is the set of 

processor instructions determined by an audiologist in an attempt to produce optimal hearing 

outcomes. Tunable parameters in a patient’s MAP include the active set of electrodes, the 

stimulation level of each electrode, and a determination of which electrodes should be 

activated when a particular frequency of sound is detected by the processor. Research 

indicates that the locations of electrodes within the cochlea impact the quality of hearing 

outcomes [3–9]. Most patients have less-than-optimal electrode array placement [5], so 

customizing the patient’s MAP is critical for optimizing hearing outcomes. Previous studies 

have proposed methods for segmenting cochlear anatomy and electrode arrays from pre- and 

post-operative computed tomography (CT) images, permitting creation of 3D models of 

cochlear structures [10–12].

Research has also shown that the spatial information garnered from these methods can be 

used to estimate channel interactions between electrodes [12, 13]. Channel interaction 

occurs when nerves, which naturally are activated for a finely tuned sound frequency, receive 

overlapping stimulation from multiple electrodes, corresponding to multiple frequency 

channels. This creates spectral smearing artifacts that lead to poorer hearing outcomes. 

Manipulating a subject’s MAP to modify the active electrode set and the stimulation patterns 

can reduce these effects. The spatial relationship between electrodes and neural sites is a 

driving factor for channel interaction. Modeling an electrode as a point charge in a 

homogenous medium has been shown to yield similar electric field estimates to more 

sophisticated finite element models when using plausible tissue resistivity values within 

known ranges for the human cochlea [14]. Using a point charge model, Coulomb’s law 

mandates that electric field strength, E(x ), at location x  is inversely proportional with 

squared distance between x  and the electrode location, c .

E(x ) ∝ 1
x − c 2 (1)
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Thus, as shown in Fig. 1b, when an electrode is close to neural sites (e.g., E8–E10), 

relatively little current is needed to activate nearby nerves, resulting in relatively little spread 

of excitation. However, when an electrode is distant to neural sites, neural activation requires 

broad stimulation patterns due to electrical current spread at greater distance. When two 

electrodes are close together and both distant to neural sites (e.g., E5–6), they create 

substantial stimulation overlap, resulting in channel interaction.

One method of visualizing the spatial relationship between electrodes and neural sites to 

determine when channel interaction occurs is to use distance vs. frequency (DVF) curves. 

These curves represent the distance from the auditory nerve spiral ganglion (SG) cells, 

which are the most likely target of electrical stimulation, to nearby electrodes (see Fig. 1c). 

The characteristic frequencies of the nerve fiber SG sites are shown on the horizontal axis, 

and the distance to electrodes near to those neural sites are shown with the height of an 

individual curve for each electrode on the vertical axis. This simplifies the process of 

determining which nerve pathways are likely to be stimulated by a given electrode and 

where two electrodes might stimulate the same region. An electrode is most likely to 

stimulate the nerves it is closest to, as indicated by the horizontal position of the minimum 

of the curve. We refer to these nerves as having SGs located in the peak activation region 

(PAR) for the electrode. Determining which nerves are stimulated by multiple electrodes 

requires making additional assumptions about the spread of excitation of each contact. In 

this work, we use Eq. (1) to estimate electric field strength, and we assume the activation 

region for an electrode includes any nerves with SG sites x  that satisfy:

E(x )
E(PAR) = PAR − c 2

x − c 2 ≥ τ, (2)

which requires that the strength of the electric field in SGs must be greater than a certain 

fraction, τ, of the electric field in the PAR for those nerves to be considered active. This is 

equivalent to ensuring the ratio of squared distance from the PAR to the electrode to the 

square distance from another nerve SG site to the electrode is greater than τ. The DVF 

curves (see Fig. 1c) permit visually assessing the activation region of each contact. The 

activation region is defined by the width of the curve for which τ times the curve height, 

τ x − c , is less than or equal to the minimum curve height, PAR − c .

If substantial overlap of activation regions exists between neighboring electrodes, some 

electrodes may be selected for deactivation to reduce overlap. This is one approach for 

image-guided CI programming (IGCIP), i.e., a method that uses image information to assist 

audiologists optimize programming of CIs. The original technique for selecting the 

deactivated set required an expert to manually review each case and determine the optimal 

solution based on the information in the DVF curves. This process is not ideal for clinical 

translation as it can be time-consuming and requires expertise. Automated methods have 

been developed to eliminate the need for expert review, which either rely on an exhaustive 

search to optimize a cost function that relies on shape features of the DVF curves [15] or 

attempt to learn to replicate expert deactivation patterns using DVF curve template matching 

[16]. However, as presented below, the current state-of-the-art method [15] leads to optimal 
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results in only 48% of cases, which is insufficiently reliable for widespread clinical 

translation. In this paper, we present an automated method for determining the active 

electrode set as a minimum cost path in a custom-designed graph. As our results will show, 

our method is significantly more robust in finding optimal deactivation plans compared to 

the state-of-the-art method and could facilitate automated clinical translation of IGCIP 

methods.

2 Methods

The dataset in this study consists of 83 cases for which we have patient-specific anatomical 

data that is used to generate the DVF curves and electrode deactivation plans from the 

current state-of-the-art technique [15] and our proposed method. All cases use an implant 

from one of three manufacturers: MED-EL (MD) (Innsbruck, Austria), Advanced Bionics 

(AB) (Valencia, California), and Cochlear (CO) (New South Wales, Australia). Of these 

cases, 24 used an implant from MD, 32 from AB, and 27 from CO.

2.1 Graph Definition

We propose a graph, G = {N, E}, as a set of nodes N and edges E. Each node in N represents 

an electrode in the array. An optimal path resulting in minimum cumulative edge cost 

traverses edges connecting nodes corresponding to electrodes recommended for activation. 

Electrodes corresponding to nodes not in the path will be recommended for deactivation. 

Using this approach, we (1) select the start and end nodes of the path, (2) identify valid 

edges using hard constraints, (3) calculate edge costs using soft constraints, and (4) use 

Dijkstra’s algorithm [17] to find the globally optimal path.

The start node of the path is chosen to be the most apical contact (see Fig. 1a) because 

deactivating the most apical contact reduces stimulation of the lowest frequency nerves, 

creating perceived frequency upshifts that are generally bad for hearing outcomes [18]. 

Thus, it is desirable for this electrode to always be active. Similarly, the end node should be 

the electrode with PAR among the highest frequency nerves that can be effectively 

stimulated near the basal end of the cochlea. It is well known that electrodes outside the 

cochlea and those near the entrance of the cochlea are typically ineffective in stimulating 

auditory nerves. We use the active-shape-model based segmentation approach proposed by 

[19] to segment the cochlea and rely on the one-to-one point correspondence between the 

segmentation in the patient image and an atlas image to define a decision plane (see Fig. 1a). 

The plane corresponds to nerves with characteristic frequencies of 15 kHz. The first 

electrode apical to this plane is the end node of the path.

The edges E are defined to permit finding a minimum edge cost path from the start to the 

end node that represents the optimal set of active electrodes. Our proposed structure of E is 

shown in Fig. 2. Edge eij is a directed edge connecting electrode i to electrode j with cost 

C(eij). Hard constraints (whether eij exists) and soft constraints (edge costs defined by a cost 

function C(eij)) ensure the minimal path corresponds to the optimal active electrode set. Two 

necessary conditions must be met for eij to exist. First, eij only exists if i < j. This ensures the 

path traverses from the most apical electrode, E1, to a sequence of increasingly more basal 

neighbors until reaching the end node. As seen in Fig. 3, edges only exist connecting nodes 
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to higher numbered nodes. Second, we encode a maximum allowable amount of activation 

region overlap between sequential active electrodes in the path as a hard constraint. We use 

Eq. 2 to define the activation region for each electrode and let τ = 0.5 in our experiments. 

We found heuristically that this value of τ selected a similar rate of active electrodes as 

reported in studies of the number of effectively independent electrodes as a function of 

electrode distance [20], and it also matched behavior of experts when selecting electrodes 

for deactivation. We then define overlap acceptable if the activation region for electrode j 
does not include the PAR for electrode i and vice versa. Thus, if the region most likely to be 

activated by an electrode (its PAR) is also activated by another electrode, too much overlap 

is occurring, in which case eij does not exist. For example, in Fig. 1c the PAR for E3 falls 

within the activation region for E4, therefore ∄ e34. An example of such a scenario is shown 

in our example graph in Fig. 2 with edge e12. With n1 and n2 exhibiting too much overlap, ∄ 
e12, and thus a path from n1 must skip n2 and instead traverse directly to n3 or n4. One 

example allowable path in this graph is shown in red.

Soft constraints are encoded in an edge cost function,

C eij = αdi + (1 − α)β(j − i − 1), (3)

where di = PARi − ci  is the distance from electrode i to its PAR, and α and β are 

parameters. The second term in the cost function ensures as many electrodes are active as 

allowable by the hard constraints, since when j = i + 1, no electrodes are deactivated, but 

when j > i + 1, some electrodes are skipped in the path, indicating they will be deactivated, 

and, assuming β > 1, a higher cost is associated with this. Further, a larger cost is assigned 

when deactivating multiple electrodes in sequence, i.e., when j ≫ i + 1, to discourage 

deactivations that result in large gaps in neural sites where little stimulation occurs. Larger 

values of β result in greater values for this penalty. The first term in Eq. (3) rewards active 

electrodes that tend to have lower distance to SG sites. The parameter α controls the relative 

contribution of the two terms.

From this graph, Dijkstra’s shortest-path algorithm can determine the global cost 

minimizing path. The resulting path represents the set of electrodes that should remain 

active, while electrodes not in the path will be recommended for deactivation.

2.2 Validation Study

Ideally, we would have an expert determine the optimal deactivation plan for each of the 83 

cases in our dataset and measure the rate at which the algorithm produces the optimal plan. 

However, for a given case, it is possible there are multiple deactivation configurations that 

could be considered equally optimal, and it is difficult to determine a complete set of equally 

optimal plans. Thus, to assess the performance of our method, we instead implemented a 

masked expert review study to assess optimality of the results of our algorithm compared to 

the current state-of-the-art algorithm and control plans for each case. In this study, an expert 

reviewer was presented with a graphical representation of the DVF curves for each case, 

showing the planned active and deactivated electrodes, similarly to Fig. 1c. The reviewer 

was instructed to determine whether each plan was optimal, i.e., the reviewer would not 
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adjust anything in the presented plan. Three sets of plans for each case were presented in this 

study. The first set consists of the results from our proposed method using parameters α = 

0.5 and β = 4. These parameter values were determined heuristically using DVF curves from 

10 cases not included in the validation set. The second set is the deactivation result from the 

method described in [15]. The final set includes control plans, manually created by a second 

expert, where the active set is close to acceptable, but suboptimal. The inclusion of control 

plans is used to indicate if the reviewer has a bias toward rating plans as optimal, e.g., if 

numerous control cases are rated as optimal, the reviewer likely has such a bias. The three 

sets of plans were presented one at a time in random order. The reviewer was masked to the 

source of each plan in order to prevent bias towards any method.

2.3 Parameter Sensitivity Analysis

We performed a parameter sweep to assess the sensitivity of the parameters in our cost 

function across a set of values around the heuristically determined values of α = 0.5 and β = 

4 used above in the validation study. We used our proposed method to determine the active 

electrode set with parameter α in the range [0.1, 0.9] with step size of 0.1 and β in the range 

[2, 6] with a step size of 0.5. This resulted in 81 different parameter combinations for each 

case. We then used the Hamming distance metric to compare the resulting plan to the plan 

evaluated in the validation study. Large differences would indicate greater sensitivity of the 

method to the parameters.

3 Results and Discussion

The results of our validation study are shown in Table 1. Our reviewer judged 79 of the plans 

generated using our proposed method to be optimal, rejecting only four cases. Only 40 of the 

plans from the previous method described in [15] were rated optimal, and none of the 

control plans were marked optimal. Accepting none of the control plans indicates that our 

expert reviewer is not biased toward accepting configurations and can accurately distinguish 

between optimal and close-to-optimal plans. We used McNemar mid-p tests to assess the 

accuracy of our plan to produce an optimal result versus that of the current state-of-the-art 

method in [15] as well as the control method. We found that the difference in success rates 

between the two methods and between the proposed and control method were highly 

statistically significant (p < 10−9).

Inspecting the four cases where the proposed deactivation plan was rejected, the reviewer 

noted that the plans for these cases were actually optimal, and the rejection in each case was 

due to erroneous reading of the DVF curves when the amount of activation region overlap 

between electrodes was very close to the acceptable overlap decision threshold. DVF curves 

for one such case are shown in Fig. 3a, along with the deactivation plan suggested by [15] in 

panel (b). The plan from the proposed algorithm in (a) was rejected because the reviewer 

mistakenly believed the PAR for E5 (green) fell within the activation region for E4 (red). 

Note that the hard constraints imposed by our proposed method guarantee plans that are free 

of this type of error, which is a significant benefit of graph-based, compared to other 

optimization methods. The plan from algorithm [15] in (b) is also borderline but was 
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correctly judged to be unacceptable because the PAR for E2 (green) falls just outside the 

activation region for E3 (red), meaning E2 should be active.

The results of our parameter sensitivity study are shown in Fig. 4. We found that our method 

was relatively insensitive to low values for α and high values for β, i.e., the deactivation plan 

did not change from the α = 0.5, β = 4 solution used in the validation study in this region of 

the parameter space. However, large numbers of plans changed when α was high or β was 

low. Since our validation study revealed that α = 0.5, β = 4 produced optimal solutions, 

changes in many plans indicates that those configurations likely produce sub-optimal results. 

This finding is reasonable since, when β is low or α is high, deactivating numerous 

electrodes in sequence is not properly penalized in the cost function.

4 Conclusion

In this study, we presented an automated graph-based approach for selecting active electrode 

sets in CIs. Automated selection methods reduce the time required to develop a patient-

specific plan and remove the necessity for an expert reviewer to manually select the active 

electrodes from a set of DVF curves. Clinical translation of IGCIP techniques requires that 

our developed methods be robust and reliable to maximize positive hearing outcomes in 

patients. Our approach utilized spatial information available from previous techniques for 

segmenting cochlear structures and electrode arrays. We used this information to develop a 

graph-based solution for selecting an optimal active electrode set. To validate our results, we 

asked an expert reviewer to rate electrode configurations as optimal or non-optimal, where 

for a plan to be considered optimal, the reviewer would make no changes to that plan. 95.2% 

of plans created from our method were accepted as optimal, compared to only 48.2% of 

plans generated using the current state-of-the-art technique. Further, post-evaluation review 

revealed that the four rejected plans from our proposed method were actually optimal. These 

results suggest that our method is significantly more robust than the current state-of-the-art 

method and could facilitate widespread, automated clinical translation of IGCIP methods for 

CI programming. In the future, we plan to evaluate our method in a clinical study to confirm 

that the results of our method produce improved hearing outcomes for CI recipients in 

practice. This study would examine improvements in hearing outcomes for subjects relative 

to their current implant configuration over the course of several weeks by collecting data 

before reprogramming and again after a 3 to 6-week adjustment period to the new electrode 

configuration. Following successful clinical confirmation of our method, we will perform a 

multi-site study to assess clinically translating this method to other institutions.
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Fig. 1. 
(a) A 3D representation of cochlea (red) and the electrode array (gray), (b) The modiolus 

containing the SG cells of the auditory nerve is shown in green with estimated spread of 

excitation from the CI electrodes multiple colors, (c) DVF curves for the same case, showing 

a deactivation plan. Active electrodes are represented by solid blue lines, and deactivated 

electrodes by dashed gray lines.
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Fig. 2. 
Visualization of our graph design. Each node is indicated with a black circle and is labeled 

with a node number ni. Dotted lines indicate invalid edges, and solid lines indicate valid 

edges. Red lines indicate an example path through the graph.
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Fig. 3. 
(a) A rejected plan generated using our proposed method, (b) A rejected plan generated 

using the method from [15], showing the same case as (a).
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Fig. 4. 
Parameter sensitivity test results. Higher values indicate a greater number of plans with 

differences from the originally generated plans, where α = 0.5 and β = 4.
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Table 1.

Validation study results. Each row indicates the number of optimal and non-optimal plans generated by the 

given method in each column.

Proposed Algorithm from [14] Control

Optimal 79 40 0

Non-optimal 4 43 83
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