Skip to main content

Predicting Obstructive Hydronephrosis Based on Ultrasound Alone

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

Prenatal hydronephrosis (HN) makes up nearly 30% of pediatric Urology Department visits, yet remains challenging to prognosticate without repeated ultrasounds and invasive clinical tests. We build a deep learning model, which uses still images from kidney ultrasound as input and predicts whether HN is due to an obstruction that will receive surgical intervention. We compare our custom convolutional neural network performance against other existing state-of-the-art models. Our best model predicts obstruction with an AUC of 0.93 and an AUPRC of 0.75 in a prospective test set of 89 patients (286 repeated kidney ultrasounds). We show that while maintaining a 5% false negative rate, our classifier identifies 58% of those who will have surgery due to obstruction yet received a functional renogram, indicating that this model could feasibly reduce the amount of testing done in more than half of non-surgical cases. This work demonstrates the ability of deep learning to predict obstructive HN with clinically relevant accuracy based on kidney ultrasound alone, without requiring other clinical variables as input. This algorithm has the potential to change clinical practice by stratifying HN patient risk, reducing repeated follow ups and invasive testing for less severe cases, and bringing more consistency to clinical management.

L. Erdman and M. Skreta—Co-first authors, A. Lorenzo and A. Goldenberg—Co-last authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. LNCS Homepage, http://www.springer.com/lncsAccessed 21 Nov 2016

  2. Fernbach, S.K., Maizels, M., Conway, J.J.: Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr. Radiol. 23, 478–480 (1993)

    Article  Google Scholar 

  3. Sidhu, G., Beyene, J., Rosenblum, N.D.: Outcome of isolated antenatal hydronephrosis: a systematic review and meta-analysis. Pediatr. Nephrol. 21, 218–224 (2006)

    Article  Google Scholar 

  4. Braga, L.H., D’Cruz, J., Rickard, M., Jegatheeswaran, K., Lorenzo, A.J.: The fate of primary nonrefluxing megaureter: a prospective outcome analysis of the rate of urinary tract infections, surgical indications and time to resolution. J. Urol. 195, 1300–1305 (2016)

    Article  Google Scholar 

  5. Bayne, C.E., Majd, M., Rushton, H.G.: Diuresis renography in the evaluation and management of pediatric hydronephrosis: what have we learned? J. Pediatr. Urol. 15, 128–137 (2019)

    Article  Google Scholar 

  6. Capone, V., et al.: Voiding cystourethrography and 99MTC-MAG3 renal scintigraphy in pediatric vesicoureteral reflux: what is the role of indirect cystography? J. Pediatr. Urol. (2019). https://doi.org/10.1016/j.jpurol.2019.06.004

    Article  Google Scholar 

  7. Jacobson, D.L., et al.: The correlation between serial uultrasound and diuretic renography in children with severe unilateral hydronephrosis. J. Urol. 200, 440–447 (2018)

    Article  Google Scholar 

  8. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019)

    Article  Google Scholar 

  9. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.W.L.: Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018)

    Article  Google Scholar 

  10. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nat. 542, 115–118 (2017)

    Article  Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nat. 521, 436–444 (2015)

    Article  Google Scholar 

  12. Dhindsa, K., Smail, L.C., McGrath, M., Braga, L.H.P., Sonnadara, R.R.: Grading prenatal hydronephrosis from ultrasound imaging using deep convolutional neural networks. In: 15th Conference on Computer and Robot Vision, (2018) https://doi.org/10.1109/crv.2018.00021

  13. Braga, L.H., McGrath, M., Farrokhyar, F., Jegatheeswaran, K., Lorenzo, A.J.: Society for fetal urology classification vs urinary tract dilation grading system for prognostication in prenatal hydronephrosis: a time to resolution analysis. J. Urol. 199, 1615–1621 (2018)

    Article  Google Scholar 

  14. Wong, N.C., Koyle, M.A., Braga, L.H.: Continuous antibiotic prophylaxis in the setting of prenatal hydronephrosis and vesicoureteral reflux. Can. Urol. Assoc. J. 11, S20–S24 (2017)

    Article  Google Scholar 

  15. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graphics Gems, pp. 474–485 (1994) https://doi.org/10.1016/b978-0-12-336156-1.50061-6

  16. Jung, K., Shah, N.H.: Implications of non-stationarity on predictive modeling using EHRs. J. Biomed. Inform. 58, 168–174 (2015)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv [cs.CV], (2014) Available: http://arxiv.org/abs/1409.1556

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv [cs.CV], (2015) Available: http://arxiv.org/abs/1512.03385

  19. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. arXiv [cs.CV], (2016) Available: http://arxiv.org/abs/1608.06993

  20. Russakovsky, Olga., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d\textquotesingle Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc, pp. 8024–8035 (2019)

    Google Scholar 

  22. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. arXiv [cs.LG], (2017) Available: http://arxiv.org/abs/1706.04599

  23. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd international conference on Machine learning, pp. 625–632. ACM (2005)

    Google Scholar 

  24. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, p. 10 (2000) Available: http://dx.doi.org/

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. arXiv [cs.CV], (2018) Available: http://arxiv.org/abs/1810.03292

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Erdman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erdman, L. et al. (2020). Predicting Obstructive Hydronephrosis Based on Ultrasound Alone. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics