Skip to main content

Three-Dimensional Thyroid Assessment from Untracked 2D Ultrasound Clips

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

The diagnostic quantification of thyroid gland, mostly based on its volume, is commonly done by ultrasound. Typically, three orthogonal length measurements on 2D images are used to estimate the thyroid volume from an ellipsoid approximation, which may vary substantially from its true shape. In this work, we propose a more accurate direct volume determination using 3D reconstructions from two freehand clips in transverse and sagittal directions. A deep learning based trajectory estimation on individual clips is followed by an image-based 3D model optimization of the overlapping transverse and sagittal image data. The image data and automatic thyroid segmentation are then reconstructed and compared in 3D space. The algorithm is tested on 200 pairs of sweeps, and shows that it can provide fully automated, but also more accurate and consistent volume estimations than the standard ellipsoid method, with a median volume error of \(11\%\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown, M.C., Spencer, R.: Thyroid gland volume estimated by use of ultrasound in addition to scintigraphy. Acta Radiol. Oncol. Radiat. Phys. Biol. 17(4), 337–341 (1978)

    Article  Google Scholar 

  2. Chang, C.Y., Lei, Y.F., Tseng, C.H., Shih, S.R.: Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 57(6), 1348–1357 (2010)

    Article  Google Scholar 

  3. Chen, J., You, H., Li, K.: A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Methods Program Biomed. 185, 105329 (2020)

    Article  Google Scholar 

  4. Karamalis, A., Wein, W., Kutter, O., Navab, N.: Fast hybrid freehand ultrasound volume reconstruction. In: Miga, M., Wong, I., Kenneth, H. (eds.) Proc. of the SPIE. 7261, 726114–726118 (2009)

    Google Scholar 

  5. Kumar, V., et al.: Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning. IEEE Access 8, 63482–63496 (2020)

    Article  Google Scholar 

  6. Lyshchik, A., Drozd, V., Reiners, C.: Accuracy of three-dimensional ultrasoundfor thyroid volume measurement in children and adolescents. Thyroid 14(2), 113–120 (2004). https://doi.org/10.1089/105072504322880346. pMID:15068625

    Article  Google Scholar 

  7. O’Malley, S.M., Granada, J.F., Carlier, S., Naghavi, M., Kakadiaris, I.A.: Image-based gating of intravascular ultrasound pullback sequences. IEEE Trans. Inf. Technol. Biomed. 12(3), 299–306 (2008)

    Article  Google Scholar 

  8. Prevost, R., et al.: 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 48, 187–202 (2018)

    Google Scholar 

  9. Prevost, R., Salehi, M., Sprung, J., Ladikos, A., Bauer, R., Wein, W.: Deep learning for sensorless 3D freehand ultrasound imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 628–636. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_71

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Shabana, W., Peeters, E., De Maeseneer, M.: Measuring thyroid gland volume: should we change the correction factor? Am. J. Roentgenol. 186(1), 234–236 (2006)

    Article  Google Scholar 

  12. Wein, W., Khamene, A.: Image-based method for in-vivo freehand ultrasound calibration. In: SPIE Medical Imaging 2008, San Diego, (2008)

    Google Scholar 

  13. Wunderling, T., Golla, B., Poudel, P., Arens, C., Friebe, M., Hansen, C.: Comparison of thyroid segmentation techniques for 3D ultrasound. In: Styner, M.A., Angelini, E.D. (eds.) Medical Imaging 2017: Image Processing. International Society for Optics and Photonics, SPIE. 10133, 346–352 (2017) https://doi.org/10.1117/12.2254234

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wein, W. et al. (2020). Three-Dimensional Thyroid Assessment from Untracked 2D Ultrasound Clips. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics