Skip to main content

Complex Cancer Detector: Complex Neural Networks on Non-stationary Time Series for Guiding Systematic Prostate Biopsy

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Ultrasound is a common imaging modality used for targeting suspected cancerous tissue in prostate biopsy. Since ultrasound images have very low specificity and sensitivity for visualizing the cancer foci, a significant body of literature have aimed to develop ultrasound tissue characterization solutions to alleviate this issue. Major challenges are the substantial heterogeneity in data, and the noisy, limited number of labeled data available from pathology of biopsy samples. A recently proposed tissue characterization method uses spectral analysis of time series of ultrasound data taken during the biopsy procedure combined with deep networks. However, the real-value transformations in these networks neglect the phase information of the signal. In this paper, we study the importance of phase information and compare different ways of extracting reliable features including complex neural networks. These networks can help with analyzing the phase information to use the full capacity of the data. Our results show that the phase content can stabilize training specially with non-stationary time series. The proposed approach is generic and can be applied to several other scenarios where the phase information is important and noisy labels are present.

This work is funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canadian Institutes of Health Research (CIHR).

P. Black, P. Mousavi and P. Abolmaesumi—Joint senior authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, H.U., et al.: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071), 815–822 (2017)

    Article  Google Scholar 

  2. Azizi, S., et al.: Deep recurrent neural networks for prostate cancer detection: analysis of temporal enhanced ultrasound. IEEE Trans. Med. Imaging 37(12), 2695–2703 (2018)

    Article  Google Scholar 

  3. Azizi, S., et al.: Classifying cancer grades using temporal ultrasound for transrectal prostate biopsy. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, William (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 653–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_76

    Chapter  Google Scholar 

  4. Azizi, S., et al.: Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 70–77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_9

    Chapter  Google Scholar 

  5. Azizi, S.: Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy. Int. J. Comput. Assist. Radiol. Surg. 13(8), 1201–1209 (2018). https://doi.org/10.1007/s11548-018-1749-z

    Article  Google Scholar 

  6. Azizi, S.: Learning from noisy label statistics: detecting high grade prostate cancer in ultrasound guided biopsy. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 21–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_3

    Chapter  Google Scholar 

  7. Bayat, S.: Investigation of physical phenomena underlying temporal-enhanced ultrasound as a new diagnostic imaging technique: theory and simulations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(3), 400–410 (2017)

    Article  Google Scholar 

  8. Bjurlin, M.A., Taneja, S.S.: Standards for prostate biopsy. Curr. Opin. Urol. 24(2), 155–161 (2014)

    Article  Google Scholar 

  9. Dramsch, J.S., Lüthje, M., Christensen, A.N.: Complex-valued neural networks for machine learning on non-stationary physical data. arXiv preprint (2019). arXiv:1905.12321

  10. Feleppa, E., Porter, C., Ketterling, C., Dasgupta, S., Ramachandran, S., Sparks, D.: Recent advances in ultrasonic tissue-type imaging of the prostate. Acoustical Imaging, pp. 331–339. Springer, Berlin (2007)

    Chapter  Google Scholar 

  11. Gopalakrishnan, S., Cekic, M., Madhow, U.: Robust wireless fingerprinting via complex-valued neural networks. arXiv preprint (2019). arXiv:1905.09388

  12. Heidenreich, A., et al.: European association of urology: EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur. Urol. 65(1), 124–137, January 2014

    Google Scholar 

  13. Imani, F.: Computer-aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE Trans. Med. Imaging 34(11), 2248–2257 (2015)

    Article  Google Scholar 

  14. Imani, F.: Augmenting MRI-transrectal ultrasound-guided prostate biopsy with temporal ultrasound data: a clinical feasibility study. Int. J. Comput. Assist. Radiol. Surg. 10(6), 727–735 (2015)

    Article  Google Scholar 

  15. Koh, B.H.D., Woo, W.L.: Multi-view temporal ensemble for classification of non-stationary signals. IEEE Access 7, 32482–32491 (2019)

    Article  Google Scholar 

  16. Moradi, M., Abolmaesumi, P., Mousavi, P.: Tissue typing using ultrasound RF time series: experiments with animal tissue samples. Med. Phys. 37(8), 4401–4413 (2010)

    Article  Google Scholar 

  17. Moradi, M.: Multiparametric 3D in vivo ultrasound vibroelastography imaging of prostate cancer: preliminary results. Med. Phys. 41(7), 073505 (2014)

    Article  Google Scholar 

  18. Nahlawi, L., et al.: Using hidden markov models to capture temporal aspects of ultrasound data in prostate cancer. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 446–449 (2015)

    Google Scholar 

  19. Popa, C.A.: Complex-valued convolutional neural networks for real-valued image classification. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 816–822. IEEE (2017)

    Google Scholar 

  20. Popa, C.A.: Deep hybrid real-complex-valued convolutional neural networks for image classification. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2018)

    Google Scholar 

  21. Popa, C.A., Cernăzanu-Glăvan, C.: Fourier transform-based image classification using complex-valued convolutional neural networks. In: Huang, T., Lv, J., Sun, C., Tuzikov, A.V. (eds.) ISNN 2018. LNCS, vol. 10878, pp. 300–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92537-0_35

    Chapter  Google Scholar 

  22. Sedghi, A., et al.: Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. Int. J. Comput. Assist. Radiol. Surg. 14(6), 1009–1016 (2019). https://doi.org/10.1007/s11548-019-01950-0

    Article  Google Scholar 

  23. Sumura, M., Shigeno, K., Hyuga, T., Yoneda, T., Shiina, H., Igawa, M.: Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int. J. Urol. 14(9), 811–816 (2007)

    Article  Google Scholar 

  24. Trabelsi, C., et al.: Deep complex networks. arXiv preprint (2017). arXiv:1705.09792

  25. Virtue, P., Stella, X.Y., Lustig, M.: Better than real: complex-valued neural nets for MRI fingerprinting. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3953–3957. IEEE (2017)

    Google Scholar 

  26. Wang, S., et al.: Deepcomplexmri: exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn. Reson. Imaging 68, 136–147 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golara Javadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Javadi, G. et al. (2020). Complex Cancer Detector: Complex Neural Networks on Non-stationary Time Series for Guiding Systematic Prostate Biopsy. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics