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Rémi Delaunay1,2[0000−0002−0398−4995], Yipeng Hu1[0000−0003−4902−0486], and
Tom Vercauteren1,2[0000−0003−1794−0456]

1 Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University
College London, Gower Street, London WC1E 6BT, UK

2 School of Biomedical Engineering & Imaging Sciences, Kings College London,
Strand, London WC2R 2LS, UK
remi.delaunay.17@ucl.ac.uk

Abstract. Quasi-static ultrasound elastography (USE) is an imaging
modality that consists of determining a measure of deformation (i.e.
strain) of soft tissue in response to an applied mechanical force. The
strain is generally determined by estimating the displacement between
successive ultrasound frames acquired before and after applying manual
compression. The computational efficiency and accuracy of the displace-
ment prediction, also known as time-delay estimation, are key challenges
for real-time USE applications. In this paper, we present a novel deep-
learning method for efficient time-delay estimation between ultrasound
radio-frequency (RF) data. The proposed method consists of a convolu-
tional neural network (CNN) that predicts a displacement field between
a pair of pre- and post-compression ultrasound RF frames. The network
is trained in an unsupervised way, by optimizing a similarity metric be-
tween the reference and compressed image. We also introduce a new
regularization term that preserves displacement continuity by directly
optimizing the strain smoothness. We validated the performance of our
method by using both ultrasound simulation and in vivo data on healthy
volunteers. We also compared the performance of our method with a
state-of-the-art method called OVERWIND [17]. Average contrast-to-
noise ratio (CNR) and signal-to-noise ratio (SNR) of our method in 30
simulation and 3 in vivo image pairs are 7.70 and 6.95, 7 and 0.31, re-
spectively. Our results suggest that our approach can effectively predict
accurate strain images. The unsupervised aspect of our approach repre-
sents a great potential for the use of deep learning application for the
analysis of clinical ultrasound data.

Keywords: Ultrasound elastography · Time delay estimation · convo-
lutional neural network

1 Introduction

Ultrasound elastography (USE) is an imaging technique that enables the charac-
terization of tissue mechanical properties [21]. Since its introduction in 1991 [19],
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strain imaging has shown usefulness in diagnostic applications where patholog-
ical alterations induce modification of tissue stiffness, such as lesion detection
in liver disease [12] and tumour characterisation in the thyroid [16], breast [7]
and prostate cancer [3]. This work focuses on quasi-static, free-hand strain elas-
tography, where a time-varying axial compression is applied with an ultrasound
transducer to the targeted tissue [23]. The tissue mechanical behavior is then
determined by mapping the relative deformation (i.e. strain) induced by manual
compression (i.e. stress).

Various methods have been proposed over the years to measure the strain.
The main approach consists of determining the spatial displacement between
a pair of radio-frequency (RF) ultrasound image data, acquired before and af-
ter applying an axial compression. The displacement estimation, also known as
time-delay estimation, has been historically performed by maximizing a corre-
lation function between local frame windows, either in the time or phase do-
main [18,20,2,22,1]. More recently, different approaches have added a regular-
ization parameter to account for displacement discontinuity and improve dis-
placement estimates [15,6]. Although these methods demonstrated the ability
to make an accurate displacement estimation, current techniques are sensitive
to noise and global decorrelation, i.e. the change of speckle appearance due to
out-of-plane motion. Furthermore, real-time imaging is an important feature of
elastography, and a trade-off is often made between the precision of standard
approaches and their computational cost.

The recent progress of learning-based methods in computer vision for op-
tical flow estimation have inspired new approaches for strain elastography [9].
Those methods demonstrated the ability of neural networks to exploit the ul-
trasound high-frequency content and to robustly produce accurate displacement
estimates [14,25]. Previous networks have been trained using ultrasound sim-
ulation associated with ground truth displacement and strain labels. Accurate
ground-truth images can be difficult to obtain for quasi-static elastography be-
cause the magnitude of applied stress is unknown. However, real-world ultra-
sound data often exhibits complex speckle patterns and echogenic features that
can be quite challenging to replicate in ultrasound simulation.

In this paper, we proposed an unsupervised method for time-delay estimation
that allows a neural network to be trained directly on clinical data and predict
tissue displacement. Unlike previous methods, our CNN training procedure is
performed without ground truth labels. Instead, the network weights are opti-
mized by minimizing a dissimilarity function between the pre-compression image
and warped compressed image. We also introduce a new regularization term that
preserves displacement continuity by directly optimizing the smoothness of the
strain prediction. We validated our method by applying it on both real ultra-
sound data and simulations. The performance of our method was evaluated by
comparing our displacement field and strain prediction with the ground truth
labels and a gold standard USE technique [17]. To the best of our knowledge,
this is the first unsupervised deep-learning method applied to strain imaging.
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2 Methods

2.1 Problem Statement

Our method follows an approach similar to a standard image registration frame-
work, which aims to find a spatial transformation that maps a moving image
into the space of a reference image. In the case of a non-rigid image registra-
tion solution, this transformation can be represented as a dense displacement
field (DDF). This transformation is generally optimized in an iterative manner,
by maximizing an objective function that measures the similarity between the
warped moving image and the reference image, and a regularization parameter
to ensure displacement continuity. From a learning-based approach perspective,
the image mapping is predicted by a neural network instead of being directly
optimized. An overview of the method is presented in Fig. 1.

2.2 Displacement Estimation

Our network takes as input a pair of pre- and post-compression 2D RF frames,
here named Pre and Post, and predicts a DDF u. The network parameters are
learned by minimizing a dissimilarity metric Lsim between pairs of 2D RF ultra-
sound data. Our training loss function also includes a regularization term, Lreg,
acting on the predicted displacement field u and associated with a weighting
hyper-parameter α, to ensure balance between the likelihood and smoothness of
the predicted transformation. The optimization problem can be written as:

θ̂ = arg min
θ

[Lsim(Pre, Post;u) + α . Lreg(u)] (1)

where θ represents the network parameters that are optimized through stochastic
gradient descent.
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Fig. 1. Overview of the method.
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The dissimilarity metric corresponds to a negative local normalized cross-
correlation (NCC) which average the NCC score between sliding windows sam-
pled from the pre-compression image and the transformed post-compression im-
age, resampled with the predicted displacement field. The NCC between two
local image windows, Wpre and Wpost, with i, j pixel components can be written
as:

NCC =
1

N

∑
i,j

[
Wpre(i, j)− µWpre

]
×
[
Wpost(i, j)− µWpost

]
σWpre

× σWpost

(2)

where N is the number of pixels (i, j) and µ and σ correspond to the mean and
standard deviation of the images, respectively.

The regularisation term consists of the L1-norm of the second spatial deriva-
tives of the predicted displacement field u. Given that the strain modulus corre-
sponds to the displacement gradient, minimizing its second derivative allows to
enforce the strain map smoothness. The regularisation term can be written as:

Lreg =
∑
i,j

(| ∂2xui,j |+ | ∂2yui,j |) (3)

where ∂2x and ∂2y are the second partial derivatives in axial and lateral directions,
respectively.

2.3 Implementation

Network The architecture of our network was presented in a method for med-
ical image registration [8], and consists in an encoder-decoder CNN with skip
connections. The encoder part is composed of four down-sampling blocks, which
capture the hierarchical features necessary to establish correspondence between
the image pair. Each down-sampling block consists of two convolutional layers
with a residual network shortcut, batch normalization, and leaky rectified lin-
ear unit (Leaky ReLU). Symmetrically, the decoder part is composed of four
up-sampling blocks that consists of an additive up-sampling layer summed over
a transpose convolutional layer. Finally, each up-sampling block outputs a dis-
placement field that is convoluted and resized to the input size, then summed to
output the predicted displacement field. The network was implemented in Ten-
sorFlow using NiftyNet [4]. It was trained by using the Adam optimiser, starting
at a learning rate of 10-3, with a minibatch of 4. The regularisation weight was
set to α = 2 to ensure displacement continuity.

Strain Estimation In USE, the strain estimates are obtained by computing the
displacement field gradient. However, direct differentiation of the displacement
field is rarely used because gradient operations generate a significant amount
of noise in the resulting strain map. We used the least-squares strain estimator
(LSQSE) to improve the elastogram signal-to-noise ratio [13]. The strain esti-
mation was also implemented in TensorFlow to facilitate efficient parallel com-
puting. In inference, the strain map prediction rate reach a total of 13 images
per second on a 12GB NVIDIA GTX-1080ti GPU.
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3 Experiments

The performance of our method was evaluated on ultrasound simulations and
in vivo data. We compared our results with a state-of-the-art strain elastog-
raphy method called tOtal Variation Regularization and WINDow-based time
delay estimation (OVERWIND) [17]. The OVERWIND results were obtained
by using the publicly available MATLAB implementation, and default param-
eters were chosen for the simulation experiment. The regularisation coefficients
were manually tuned for the in vivo data to globally maximize the NCC and
Contrast-to-Noise Ratio (CNR) scores of the three cases. The results on simula-
tion were also compared with strain estimates obtained by training our network
with a supervised loss function. The supervised loss function was used before
for time-delay estimation [25], and corresponded to the mean absolute difference
(MAE) between the network prediction and the ground truth labels. The quality
of the strain estimates were assessed with the CNR and Signal-to-Noise Ratio
(SNR), which are metrics commonly used in USE [24,17].

Simulation Dataset The Field-II software [11,10] was used to generate the
ultrasound images. Each simulation consisted in a 3D rectangle of size 38x40
mm, containing a cylindrical-shaped inclusion with a randomly assigned diam-
eter (from 8 to 12 mm) and position. The speckle pattern typically observed
in ultrasound imaging was obtained by randomly assigning a total of 400,000
scatterers across each digital phantom. The axial compression was assigned ran-
domly to each phantom and represented between 0.5% and 4% of the phantom
total length. The Young’s modulus of the inclusion was set to different values
(i.e. 8, 15, 45 and 75 kPa) while the background was fixed to 25 kPa. Tissue
displacements were estimated by finite element method using the Partial Dif-
ferential Equation Toolbox from MATLAB, and were used to interpolate the
scatterers position. A total of 192 RF lines were simulated for each image, with
probe central and sampling frequency of 7 and 40 MHz, respectively. The back-
ground scatterers were associated with a random intensity value from a Gaussian
distribution, to mimic homogeneous tissue. To increase the network’s robustness
to noise and image intensities, the inclusion scatterers intensities were either as-
signed to 0 or similar to the background. Moreover, white Gaussian noise with
random signal power values, from 5 to 20 dBw, was added on each image to
increase robustness to noise. Finally, 160 ultrasound image pairs were simulated,
where 100 were used for training and 30 for validation and testing, respectively.

In Vivo Dataset We created our own in vivo dataset by collecting images
of the arms in three human volunteers. The RF data was acquired from a Ci-
cada 128PX system equipped with a 10 MHz linear probe from Cephasonics
(Cephasonics Inc., USA). The images were reconstructed using the delay-and-
sum beamformer from SUPRA [5]. Experimental protocol consisted in acquiring
sequences of images while slowly applying an axial compression on the volun-
teer’s arm with the handheld ultrasound probe. The in vivo dataset included
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1300 image pairs for training and 300 pairs for validation and testing. The three
image pairs presented in the results section were taken from the testing partition
and exhibit one or several blood vessels located in the arm.

3.1 Results

Figure 2 shows axial strain images estimated from three simulated image pairs
and obtained with the finite element method, OVERWIND and both supervised
and unsupervised models. The averaged CNR and SNR values of the entire
testing dataset (i.e., 30 image pairs) are displayed in table 1.

Unsupervised OverwindSupervisedGround Truth

Fig. 2. Comparison of three axial strain fields computed from ultrasound simulations
by finite element method (i.e., ground truth), OVERWIND, the unsupervised and
supervised network. OVERWIND’s regularisation parameters : α1 = β1 = 20 and
α2 = β2 = 8.

Table 1. Mean and standard deviation of SNR and CNR for the strain images of
the simulation testing dataset obtained with finite element method, OVERWIND, the
unsupervised and supervised network.

Ground truth
(mean std)

Unsupervised
(mean std)

Supervised
(mean std)

OVERWIND
(mean std)

SNR 7.51 (2.61) 6.95 (2.54) 7.79 (2.01) 9.31 (3.51)
CNR 9.15 (2.73) 7.70 ( 3.8) 4.22 (2.08) 6.33 (3.6)
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Figure 3 shows axial strains estimated from three different in vivo image
pairs. CNR and SNR values of each case can be found in table 2. The local NCC
values between the post-compression and resampled pre-compression images are
also displayed, to indicate the quality of the predicted displacement fields. The
mean of the three CNR values are 7 and 8.43 for our unsupervised model and
OVERWIND, respectively. The average SNR values are 0.31 and 0.7 for our
method and OVERWIND, respectively. Displacement field estimates from both
the simulation and in vivo experiments are available in the supplementary ma-
terial.

Fig. 3. Comparison of axial strains estimated by our method and OVERWIND on three
image pairs from the in vivo testing dataset . OVERWIND’s regularisation parameters
: α1 = β1 = 0.2 and α2 = β2 = 0.05.

Table 2. SNR and CNR of strain estimates from our unsupervised method and OVER-
WIND, and local NCC scores for the three image pair results from the in vivo dataset.

Unsupervised OVERWIND
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

SNR 0.14 0.07 0.1 0.12 0.35 0.23
CNR 6.22 5.2 4.5 4.9 3.15 2.23

LNCC 0.87 0.81 0.94 0.90 0.81 0.93
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4 Discussion

In this work, we presented a new deep-learning approach for the estimation
of the displacement and strain maps between a pair of ultrasound RF data
undergoing an axial compression. We validated our method on both ultrasound
simulation and in vivo data . Our method is completely unsupervised and ground
truth images collected from finite element analysis were only used to assess the
performance of our method.

Our results on ultrasound simulation indicate that our method predicts strain
estimates with a significantly better CNR compared to the supervised network,
with 7.70 and 4.20 respectively. This suggests that our training loss function,
which includes a term that penalizes the strain smoothness, improves the strain
contrast. Our experiments showed comparable results to OVERWIND, a state-
of-the-art method which has, in terms of CNR, already outperformed a previous
classical approach [6] by 27.26%, 144.05%, and 49.90% on average in simulation,
phantom, and in-vivo data, respectively, as reported in [17]. In addition, our
method is fully automatic in inference while OVERWIND strain estimation relies
on the correct adjustment of its regularisation parameters.

Finally, the OVERWIND real-time performance had not been quantitatively
reported while our approach reached a strain prediction rate of about 13 frames
per second on a 12GB NVIDIA GTX-1080ti GPU. The real-time inference of
our network and its ability to be trained without ground truth labels represents
a great potential for the use of learning-based methods in ultrasound strain
elastography.
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