
Automatic Probe Movement Guidance for Freehand Obstetric 
Ultrasound

Richard Droste, Lior Drukker, Aris T. Papageorghiou, J. Alison Noble
Richard Droste: richard.droste@eng.ox.ac.uk
1Institute of Biomedical Engineering, University of Oxford, Oxford, UK

2Nuffield Department of Womens & Reproductive Health, University of Oxford, Oxford, UK

Abstract

We present the first system that provides real-time probe movement guidance for acquiring 

standard planes in routine freehand obstetric ultrasound scanning. Such a system can contribute to 

the world-wide deployment of obstetric ultrasound scanning by lowering the required level of 

operator expertise. The system employs an artificial neural network that receives the ultrasound 

video signal and the motion signal of an inertial measurement unit (IMU) that is attached to the 

probe, and predicts a guidance signal. The network termed US-GuideNet predicts either the 

movement towards the standard plane position (goal prediction), or the next movement that an 

expert sonographer would perform (action prediction). While existing models for other ultrasound 

applications are trained with simulations or phantoms, we train our model with real-world 

ultrasound video and probe motion data from 464 routine clinical scans by 17 accredited 

sonographers. Evaluations for 3 standard plane types show that the model provides a useful 

guidance signal with an accuracy of 88.8 % for goal prediction and 90.9 % for action prediction.
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1 Introduction

Ultrasound scanning is an indispensable diagnostic tool in obstetrics due to its safety, real-

time results and low cost. At the same time, many women in developing countries do not 

receive a single ultrasound examination throughout their pregnancy due to a lack of skilled 

operators [20]. The main tasks of ultrasound scanning are the acquisition, examination/

verification and interpretation of pre-defined standard anatomical planes that enable the 

detection of fetal abnormalities. Systems that provide assistance for or automate these tasks 

have the potential of enabling worldwide access to ultrasound scanning by reducing the level 

of necessary expertise. Standard plane examination/verification and interpretation are largely 

standardized [18], can be performed remotely [3], and can be facilitated through automated 

image analysis [24]. Freehand standard plane acquisition, on the other hand, is harder to 

facilitate/automate since it is not standardized and requires interaction with the mother. It 

demands years of training and is the rate-limiting step even for experienced sonographers 

[1].
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To address this issue, we present the first system that provides real-time probe movement 

guidance for fetal standard plane acquisition in routine freehand obstetric ultrasound 

scanning. An overview of the system is presented in Fig. 1. An artificial neural network 

termed US-GuideNet receives the ultrasound video signal alongside the signal of a motion 

sensor that is attached to the ultrasound probe, and outputs probe movement guidance that 

directs the operator towards the desired standard plane. No specialized equipment is 

required: The motion sensor is a common inertial measurement unit (IMU) that is attached 

to the probe of a standard clinical ultrasound machine. Further, the US-GuideNet neural 

network is designed to be extremely lightweight and can run real time inference on a CPU. 

Behavioral cloning (BC), a type of imitation learning, has emerged as a powerful technique 

to train neural networks to perform complex real-world tasks such as autonomous driving 

[14]. Here, we collect 5079 demonstrations of standard plane acquisitions from 464 2nd- and 

3rd-trimester scans acquired by 17 accredited sonographers and implement two settings of 

BC: 1) For goal prediction, the network predicts the movement that leads directly to the 

estimated position of the standard plane. 2) For action prediction, the network predicts the 

next movement that the expert would perform.

2 Related Work

Various approaches have been proposed to address the difficulty of ultrasound standard 

plane acquisition.

Robotic Ultrasound

Human-controlled robotic systems have been developed that allow experienced 

sonographers to perform obstetric ultrasound exams remotely [22]. Automated robotic 

systems have been proposed for highly structured tasks such as finding planes of motionless 

objects [11,8] or the human liver [13]. However, despite on-going efforts [23], no robotic 

system has been proposed that can automate the complex task of obstetric ultrasound 

scanning.

Simplifted Acquisition Protocols

Instead of assisting operators to acquire typical freehand 2D standard planes, previous work 

has proposed to automatically extract standard planes from data that are acquired with a 

simplified protocol, such as 3D ultrasound volumes [17,7] or linear sweeps over the 

maternal abdomen [10]. Moreover, IMUs have been used to acquire 3D ultrasound volumes 

with 2D probes [5,16]. However, these methods are applicable only for a subset of standard 

planes (fetal abdomen and head) and the standard plane quality is not up to par with typical 

freehand scanning.

Phantoms and Simulated Environments

Recent studies have proposed learning based systems that are trained to acquire ultrasound 

planes in simplified environments. One study proposes an algorithm that learns to find a 

view of the adult heart in a grid of pre-acquired ultrasound images [12]. Moreover, 

learningbased systems have been proposed in which a robotic actuator finds predefined 

views of simple tissue phantoms [6] or a fetal US phantom [21]. However, a fetus in the 
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mother’s womb is a dynamic and highly variant object that can not be well-represented with 

static simulations or a phantom. Moreover, these algorithms are purely image-based and 

therefore rely on the exact execution of the predicted actions, which is only possible within a 

simulation or with a robotic system. Here, we train a guidance algorithm with video and 

probe motion data from a large number of real-world expert demonstrations from routine 

scanning. Moreover, our algorithm receives the real-time probe motion signal and can 

therefore react to the movements of a human operator.

3 Method

Fig. 1 presents an overview of the proposed system. An operator performs routine obstetric 

ultrasound scanning with a standard clinical machine. An inertial measurement unit (IMU) 

motion sensor is attached to the ultrasound probe and an on-board attitude and heading 

reference system (AHRS) estimates the sensor’s orientation in the earth coordinate system. 

The motion sensor signal and the machine video signal are input into a neural network, US-
GuideNet, that outputs a 3D rotation of the probe that guides the operator towards the 

standard plane. The network training method is described in Section 3.1, the network 

architecture is detailed in Section 3.2 and implementation details are provided in Section 

3.3.

3.1 Learning from Expert Demonstrations

We pose the problem of training a neural network to predict a probe guidance signal as a 

behavioral cloning problem. That is, we record standard plane acquisition demonstrations 

from several experts for a large number of patients and train the network to replicate the 

demonstrated behavior. In general, a standard plane acquisition consists of live B-mode 

scanning followed by freezing the ultrasound video and optionally selecting a previous 

frame with the desired appearance from a cine-buffer. We define the finally selected frame 

as the standard plane.

Problem Formulation— Fig. 2 a) presents the formulation of the learning problem. Let 

{X t ∈ ℝH×W | t ∈ } be ultrasound video frames of a standard plane acquisition, 

temporally downsampled to 6 Hz, with resolution H × W and frame indices T = i i = 0
F , 

where F is the freeze frame index. Moreover, let X S be the standard plane with index S ∈ 

\ {0}. Finally, let q t = [q w, q x, q y, q z]⊤ be the probe orientation quaternion of frame X t 

and qt
t2: = qt*qt2 the probe rotation quaternion from frame X t to frame X t2, where q ∗ is the 

conjugate. We represent orientations with quaternions since they can be smoothly 

interpolated without discontinuities or singularities, and are numerically stable and 

computationally efficient [15]. Euler angles, in contrast, another popular representation of 

rotations, suffer from discontinuities such as the gimbal lock. We do not consider probe 

translation in this work since the IMU is not suitable to estimate it accurately.

Behavioral Cloning—We train a policy network π θ : s t ›→ u t termed US-GuideNet 
with parameters θ that maps the state s t at time step t ∈  to an action u t. We define the 

state as the tuple st: = Xt, qt − 1
t , ht − 1 , where h t–1 is the hidden state of a recurrent neural 
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network within π θ. We explore the two different settings for the action u t: goal prediction 

and action prediction. For goal prediction, the policy πθ
g:st qt

S estimates the rotation from 

the current orientation to the orientation of the standard plane. If the estimated standard 

plane orientation is accurate, this policy is optimal, i.e., it guides the operator directly to the 

standard plane. However, it is not guaranteed that enough information has been seen at time t 
for an accurate estimation of the standard plane orientation. Therefore, we explore a second 

setting, action prediction, where the policy πθ
a:st qt

t+1 estimates the next rotation that the 

operator would perform. This policy aims to closely mimic the expert sonographer behavior.

Loss Function—During training, a demonstration is constructed from a subset of indices 

D ⊂  with start and end indices t 0 and T. Let Q: = qt
t2

t = t0
T

 and Q: = qt
t2

t = t0
T

 be the 

predicted and ground truth rotation quaternion sequences, with t 2 ∈ {S, t + 1} for goal 
prediction and action prediction respectively. We add an auxiliary output after the MNet in 

order to facilitate and regularize its training: Since we want the MNet to recognize the 

appearance of standard planes, we input the average pooled MNet features into a softmax 

layer that predicts the class probabilities of the SonoNet standard plane classifier [2] for each 

frame. Let P = pt t = t0
T  be the auxiliary softmax output and Y = yt t = t0

T  the SonoNet class 

probabilities, with pt, yt ∈ ℝ ≥ 0
14 . The total training loss L is

ℒ = ∑
t = t0 + W

T
− 1

qt
t2

qt
t2 ⋅ qt

t2

Similarity loss

+ α 1 − qt
t2 2 2

Norm loss

− β ∑
t = t0

T
yt⊤diag w log pt

Auxiliary loss

where denotes the dot-product, α, β ∈ ℝ>0 are scalar weighting factors, w ∈ ℝ ≥ 0
14  is a 

weight vector that balances the SonoNet class probabilities, and W is a warm up time for the 

rotation prediction.

3.2 US-GuideNet Architecture

The US-GuideNet policy network receives the ultrasound video and probe motion signals 

and outputs predicted expert probe rotations as described in Section 3.1. We design the 

architecture for small time and space computational complexity (runtime and model size) 

such that it can run real-time inference on the CPU of an inexpensive computer. The network 

architecture is illustrated in Fig. 2 b). At each time step t, the ultrasound video frame X t is 

fed into a MobileNet V2 (MNet) convolutional neural network [19], which consists of a 

cascade of lightweight depthwise-separable and pointwise convolutions. We use MNet with 

a width- multiplier of 0.5, i.e., 50% reduced number of channels. Next, the dimensionality of 

the MNet output is reduced with a custom ConcatPool operation that preserves both 

semantic and spatial information by concatenating global average pooled (GAP) features 

with the x and y coordinates of the centers of mass (COM-x/y) of the feature maps. After 

reducing the features to 128 channels with a fully-connected layer FC1, they are 

concatenated with the current probe rotation quaternion qt − 1
t  and input into a gated 
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recurrent unit [4] (GRU) with 132 input channels and 128 hidden channels. Finally FC2, a 

fully-connected layer with one 128-channel hidden layer, outputs the 4-dimensional probe 

rotation quaternion.

3.3 Experimental Setup

Data Acquisition—The data were acquired as part of the PULSE (Perception Ultrasound 

by Learning Sonographic Experience) project, a prospective study of routine fetal ultrasound 

scans performed in all trimesters by accredited sonographers and fetal medicine doctors at 

the maternity ultrasound unit, Oxford University Hospitals NHS Foundation Trust, 

Oxfordshire, United Kingdom. The exams were performed on a GE Voluson E8 scanner 

(General Electric, USA) while the video signal of the machine monitor was recorded 

lossless at 30 Hz. The motion of each of two curved linear array transducer (2D) probes was 

recorded with a NGIMU IMU/AHRS (x-io Technologies Ltd., UK). Each motion sensor was 

attached to the cable outlet of the probe with a custom 3D-printed mount as shown in Fig. 1. 

The probe orientation quaternions were sampled at 400 Hz. This study was approved by the 

UK Research Ethics Committee (Reference 18/WS/0051) and written informed consent was 

given by all participating pregnant women and operators. In this paper we use ultrasound 

video and corresponding gaze data of 464 second and third trimester scans acquired by 17 

accredited sonographers between May 2018 and February 2020.

Data Processing—We extracted the standard plane acquisitions from the ultrasound scans 

with a purpose-built program based on optical character recognition. For each of the 5079 

resulting acquisitions, the program outputs the corresponding live B-Mode scanning 

segment, the freeze frame and the cinebuffer-corrected standard plane. In addition, the 

program labels acquisitions of the biometry standard planes: the femur standard plane (FSP), 

the abdominal standard plane (ASP) and the trans-ventricular plane (TVP) [18], which we 

use for evaluation. The acquisition duration was limited to 10 s before the standard plane. 

We automatically corrected any lag between the video and motion signals by correlating 

frame differences with probe motion, and manually verified the synchronization. The video 

frames were cropped such that the ultrasound machine’s graphical user interface was 

removed, and normalized to zero-mean and unit-variance. The scans are divided into 80% 

for training and 20% for testing.

Training—For each training epoch, a demonstration of 32 frames is randomly selected 

from each standard plane acquisition, which corresponds to a duration 5.3 s at 6 Hz. It is 

ensured that mint{q t · q S} ≥ 0.7 for each demonstration. The frames are augmented by 

randomly changing of the brightness, contrast and gamma by ±10% and randomly 

symmetrically cropping up to 20% of the frame border. The frames are then down-sampled 

to the network input resolution of 224 × 288. The MNet is pre-trained via the auxiliary loss 

with a large number of ultrasound frames. The entire US-GuideNet neural network is then 

trained from the demonstrations for 20 epochs with the AdamW optimizer [9] with weight 

decay of 10–2 and initial learning rate of 0.001, which is decayed by a factor of 0.1 every 8 

epochs. The batch size is set to 8 and the warm up time for the rotation loss to 1 s. After 

training with all demonstrations, the model is fine-tuned for each evaluation plane (FSP, 

ASP and TVP) separately for 16 epochs.

Droste et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Evaluation and Baseline—We evaluate the trained model on the full-length standard 

plane acquisitions (clipped to 10 s before the standard plane). For each time step, we classify 

the predicted probe rotation as correct if and only if ∠(qtqt
t2, qt2)<∠(qtqt2), t 2 ∈ {S, t + 1}, 

i.e., if applying the predicted rotation reduces the angle to the target orientation. As before, t 

2 = S for goal prediction and t 2 = t + 1 for action prediction. As a baseline rotation 

prediction we use qt − 1
t , i.e., continuing in the current direction of rotation at each time step.

4 Results

The experimental results are shown in Fig. 3. The average accuracy of the guidance signal 

and baseline is evaluated for different ranges of the angular distance to the target (standard 

plane orientation for goal prediction or next probe position for action prediction). This 

enables the separation of the performance for coarse (large angular distance) and fine (low 

angular distance) adjustments. The x-axis of the individual plots provides the lower limits of 

the ranges, which extend to the next-higher x-axis value. Across the action prediction and 

goal prediction settings and all evaluated standard plane types, a common pattern can be 

observed that the accuracy of the guidance signal tends to increase with increasing angular 

distance to the standard plane.

Goal Prediction

The goal prediction accuracies are given in the upper row of Fig. 3. The guidance signal 

performs better than the baseline for any angle range >6°. The accuracy of the guidance 

signal increases with increasing angular distances to the standard plane, ranging from 42.2 

% for angles 0° to 6° to 88.8 % for angles >30°, with 81.0 % for the FSP and 92.1 % for the 

ASP. The average baseline accuracy slightly declines towards higher angular distances.

Action Prediction

The guidance signal accuracy is higher than the baseline accuracy for all target distance 

ranges. The average guidance signal accuracy increases from 38.0 % for angles 0° to 1.5° to 

90.9 % for distances >3°. At angles >3°, the largest accuracy is observed for the TVP with 

93.3 % and the lowest for the FSP with 83.3 %. The average baseline accuracy slightly 

increases with increasing angular distances.

5 Discussion and Conclusion

The results presented in Section 4 demonstrate that the proposed probe guidance system for 

obstetric ultrasound scanning indeed provides a useful navigation signal towards the 

respective target, which is the standard plane orientation for goal prediction and the next 

expert movement for action prediction. The accuracy of US-GuideNet increases for larger 

differences to the target orientation, which shows that the algorithm is robust for guiding the 

operator towards the target orientation from distant starting points. For small distances, it is 

difficult to predict an accurate guidance signal since the exact target orientation may be 

subject to inter- and intra-sonographer variations or sensor uncertainty. The accuracy is 

similar for goal prediction and action prediction but slightly higher for action prediction at 
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intermediate angles to the target, which can be explained by the fact that the action is always 

based on the previously seen frames, while the target position might be yet unknown.

The guidance signal accuracies are generally the highest for the abdominal and head 

standard planes (ASP and TVP). The accuracy for the femur standard plane (FSP) is slightly 

lower, which can be explained by the fact the the femur is part of an extremity and therefore 

subject to more fetal movement, which can make its final position unpredictable. Moreover, 

the FSP is defined via two anatomical landmarks—the distal and proximal ends of the femur

—while the ASP and TVP are determined by the appearance of more anatomical structures 

[18]. This might make it more difficult for the model to predict the FSP position that was 

chosen by the operator, since it is subject to more degrees of freedom.

A limitation of our study is that we test our algorithm with pre-acquired data. However, in 

contrast with previous work [12,6,21] which uses simulations or phantoms, our proposed 

system is trained and evaluated on data from real- world routine ultrasound scanning. 

Moreover, instead of relying on the exact execution of the probe guidance as in previous 

work [12,6,21], our system reacts to the actual operator probe movements that are sensed 

with an IMU. This suggests that the system will perform well in future tests on volunteer 

subjects. In general, the accuracy of the predictions of US-GuideNet is evident from the 

large improvements over the baseline of simply continuing the current direction of rotation. 

While probe translation is not predicted due to IMU limitations, only the through-plane 

sweeping translation would usually change the view of the fetus while the sideways sliding 

and downwards/upwards translations would shift the fetal structure within the ultrasound 

image. In combination with the rotation guidance, this leaves one degree of freedom to be 

determined by the operator.

In conclusion, this paper presents the first probe movement guidance system for the 

acquisition of standard planes in freehand obstetric ultrasound scanning. Moreover, it is the 

first guidance system for any application of ultrasound standard plane acquisition that is 

trained with video and probe motion data from routine clinical scanning. Our experiments 

have shown that the proposed US-GuideNet network and behavioral cloning framework 

result in an accurate guidance system. These results will serve as a foundation for 

subsequent validation studies with novice operators. The proposed algorithm is lightweight 

which facilitates the deployment for existing ultrasound machines.
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Fig. 1. 
System overview. Left : An operator performs ultrasound scanning with a routine clinical 

setup while the motion of the probe is recorded with an IMU. Bottom right : The US-
GuideNet receives the IMU motion signal and the ultrasound video signal as inputs and 

outputs a real-time probe movement guidance signal. Top right : Attachment of the IMU to 

the ultrasound probe and IMU coordinate system.
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Fig. 2. 
a) Proposed behavioral cloning framework. b) US-GuideNet architecture.
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Fig. 3. 
Experimental results for the evaluated standard planes: TVP (head), ASP (abdomen) and 

FSP (femur). In addition, the overall accuracies are provided.
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